Advertisement

Performance Prediction and Evaluation of Parallel Applications in KVM, Xen, and VMware

  • Cheol-Ho Hong
  • Beom-Joon Kim
  • Young-Pil Kim
  • Hyunchan Park
  • Chuck Yoo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8632)

Abstract

Cloud computing platforms are considerably attractive for parallel applications that perform large-scale, computationally intensive tasks. These platforms can provide elastic computing resources to the parallel software owing to system virtualization technology. Almost every cloud service provider operates on a pay-per-use basis, and therefore, it is important to estimate the performance of parallel applications before deploying them. However, a comprehensive study that can predict the performance of parallel applications remains unexplored and is still a research topic. In this paper, we provide a theoretical performance model that can predict the performance of parallel applications in different virtual machine scheduling policies and evaluate the model in representative hypervisors including KVM, Xen, and VMware. Through this analysis and evaluation, we show that our performance prediction model is accurate and reliable.

Keywords

Cloud Computing Virtual Machine Parallel Application Cloud Service Provider Computation Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi, R., Frederickson, P., Lasinski, T., Schreiber, R., et al.: The nas parallel benchmarks summary and preliminary results. In: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing 1991, pp. 158–165. IEEE (1991)Google Scholar
  2. 2.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: ACM SIGOPS Operating Systems Review, vol. 37, pp. 164–177. ACM (2003)Google Scholar
  3. 3.
    Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Cystems 25(6), 599–616 (2009)CrossRefGoogle Scholar
  4. 4.
    Friebel, T., Biemueller, S.: How to deal with lock holder preemption. Presentation at Xen Summit North America (2008)Google Scholar
  5. 5.
    Fürlinger, K., Gerndt, M.: ompp: A profiling tool for openmp. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005/2006. LNCS, vol. 4315, pp. 15–23. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Haletky, E.: Vmware esx and esxi in the enterprise (2011)Google Scholar
  7. 7.
    Hong, C., Yoo, C.: Synchronization-aware virtual machine scheduling for parallel applications in xen. IEICE Transactions on Information and Systems 96(12), 2720–2723 (2013)CrossRefGoogle Scholar
  8. 8.
    Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: The linux virtual machine monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225–230 (2007)Google Scholar
  9. 9.
    Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Towards a performance tool interface for OpenMP: An approach based on directive rewriting. Forschungszentrum, Zentralinst. für Angewandte Mathematik (2001)Google Scholar
  10. 10.
    Nishitani, Y., Negishi, K., Ohta, H., Nunohiro, E.: Implementation and evaluation of openmp for hitachi sr8000. In: Valero, M., Joe, K., Kitsuregawa, M., Tanaka, H. (eds.) ISHPC 2000. LNCS, vol. 1940, pp. 391–402. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Sukwong, O., Kim, H.: Is co-scheduling too expensive for smp vms? In. In: Proceedings of the Sixth Conference on Computer Systems, pp. 257–272. ACM (2011)Google Scholar
  12. 12.
    Tao, J., Fürlinger, K., Marten, H.: Performance evaluation of openmp applications on virtualized multicore machines. In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665, pp. 138–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Tao, J., Fürlinger, K., Wang, L., Marten, H.: A performance study of virtual machines on multicore architectures. In: PDP, pp. 89–96 (2012)Google Scholar
  14. 14.
    Uhlig, V., LeVasseur, J., Skoglund, E., Dannowski, U.: Towards scalable multiprocessor virtual machines. In: Proceedings of the 3rd Virtual Machine Research and Technology Symposium, pp. 43–56 (2004)Google Scholar
  15. 15.
    VMWare. The cpu scheduler in vmware vsphere 5.1., https://www.vmware.com/files/pdf/techpaper/VMware-vSphere-CPU-Sched-Perf.pdf
  16. 16.
    Weng, C., Wang, Z., Li, M., Lu, X.: The hybrid scheduling framework for virtual machine systems. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 111–120. ACM (2009)Google Scholar
  17. 17.
    Xu, C., Bai, Y., Luo, C.: Performance evaluation of parallel programming in virtual machine environment. In: Sixth IFIP International Conference on Network and Parallel Computing, NPC 2009, pp. 140–147. IEEE (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cheol-Ho Hong
    • 1
  • Beom-Joon Kim
    • 2
  • Young-Pil Kim
    • 1
  • Hyunchan Park
    • 1
  • Chuck Yoo
    • 1
  1. 1.Korea UniversitySeoulSouth Korea
  2. 2.LG ElectronicsSeoulSouth Korea

Personalised recommendations