Skip to main content

Fluctuations of Observables in Dynamical Systems: From Limit Theorems to Concentration Inequalities

  • Chapter
  • First Online:
Nonlinear Dynamics New Directions

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 11))

Abstract

We start by reviewing recent probabilistic results on ergodic sums in a large class of (nonuniformly) hyperbolic dynamical systems. Namely, we describe the central limit theorem, the almost-sure convergence to the Gaussian and other stable laws, and large deviations.

Next, we describe a new branch in the study of probabilistic properties of dynamical systems, namely concentration inequalities. They allow to describe the fluctuations of very general observables and to get bounds rather than limit laws. We end up with two sections: one gathering various open problems, notably on random dynamical systems, coupled map lattices, and the so-called nonconventional ergodic averages; and another one giving pointers to the literature about moderate deviations, almost-sure invariance principle, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    i.i.d. stands for “independent and identically distributed.”

  2. 2.

    The explicit formula (1) is not important, what matters is only the local behavior around the fixed point.

  3. 3.

    These parameters form a subset of \(\mathbb{R}^2\) with positive Lebesgue measure [5].

  4. 4.

    A renormalization function is a function \(B: \mathbb{R}_+^*\to \mathbb{R}_+^*\) of the form \(B(x)=x^d L(x)\) where \(d>0\) and L is a normalized, slowly varying function. The corresponding renormalizing sequence is \(B_n:=B(n)\).

  5. 5.

    which is not of the form \(g-g\circ T\) for some bounded measurable g.

References

  1. Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, vol. 16. World Scientific, Singapore (2000)

    Google Scholar 

  2. Bálint, P., Gouëzel, S.: Limit theorems in the stadium billiard. Comm. Math. Phys. 263(2), 461–512 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bardet, J.-B., Gouëzel, S., Keller, G.: Limit theorems for coupled interval maps. Stoch. Dyn. 7(1), 17–36 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beck, C., Touchette, H.: Nonconcave entropies in multifractals and the thermodynamic formalism. J. Stat. Phys. 125(2), 459–475 (2006)

    MathSciNet  Google Scholar 

  5. Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. Second Ser. 133(1), 73–169 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benedicks, M., Viana, M.: Random perturbations and statistical properties of Hénon-like maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(5), 713–752 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benedicks, M., Young, L.-S.: Markov extensions and decay of correlations for certain Hénon maps. In: Géométrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque 261, 13–56 (2000)

    Google Scholar 

  8. Berkes, I., Csáki. E.: A universal result in almost sure central limit theory. Stoch. Process. Appl. 94(1), 105–134 (2001)

    Article  MATH  Google Scholar 

  9. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, 2nd revised edn. With a preface by David Ruelle. Edited by J.-R. Chazottes. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (2008)

    Google Scholar 

  10. Bryc, W.: A remark on the connection between the large deviation principle and the central limit theorem. Stat. Probab. Lett. 18(4), 253–256 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carinci, G., Chazottes, J.-R., Giardinà, C., Redig, F.: Nonconventional averages along arithmetic progressions and lattice spin systems. Preprint (2012), arXiv:1110.2354

    Google Scholar 

  12. Chazottes, J.-R., Collet, P.: Almost sure central limit theorems and Erdös-Rényi type law for expanding maps of the interval. Ergod. Theory Dyn. Syst. 25(2), 419–441 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chazottes, J.-R., Fernandez, B.: Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems. Lecture Notes in Physics, vol. 671. Springer, Berlin (2005) (Lectures from the school-forum (CML 2004) held in Paris, 21 June–2 July 2004)

    Google Scholar 

  14. Chazottes, J.-R., Gouëzel, S.: On almost-sure versions of classical limit theorems for dynamical systems. Probab. Theory Relat. Fields 138(1–2), 195–234 (2007)

    Article  MATH  Google Scholar 

  15. Chazottes, J.-R., Gouëzel, S.: Optimal concentration inequalities for dynamical systems. Commun. Math. Phys. 316(3), 843–889 (2012)

    Article  MATH  Google Scholar 

  16. Chazottes, J.-R., Maldonado, C.: Concentration bounds for entropy estimation in one-dimensional Gibbs measures. Nonlinearity 24(8), 2371–2381 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chazottes, J.-R., Collet, P., Schmitt, B.: Devroye inequality for a class of non-uniformly hyperbolic dynamical systems. Nonlinearity 18, 2323–2340 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chazottes, J.-R., Collet, P., Schmitt, B.: Statistical consequences of Devroye inequality for processes. Applications to a class of non-uniformly hyperbolic dynamical systems. Nonlinearity 18, 2341–2364 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chazottes, J.-R., Collet, P., Redig, F., Verbitskiy, E.: A concentration inequality for interval maps with an indifferent fixed point. Ergod. Theory Dyn. Syst. 29, 1097–1117 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chernov, N., Young, L.S..: Decay of correlations for Lorentz gases and hard balls. In: Szász, D. (ed.) Hard Ball Systems and the Lorentz Gas. Encyclopaedia of Mathematical Sciences, vol. 101, pp. 89–120. Springer, Berlin (2000)

    Google Scholar 

  21. Chernov, N., Zhang, H.-K.: Billiards with polynomial mixing rates. Nonlinearity 18(4), 1527–1553 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chernov, N., Zhang, H.-K.: Improved estimates for correlations in billiards. Comm. Math. Phys. 277(2), 305–321 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Collet, P., Eckmann, J.-P.: Concepts and Results in Chaotic Dynamics: A Short Course. Theoretical and Mathematical Physics. Springer, Berlin (2006)

    Google Scholar 

  24. Collet, P., Martínez, S., Schmitt, B.: Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory Relat. Fields 123, 301–322 (2002)

    Article  MATH  Google Scholar 

  25. Cowieson, W., Young, L.-S.: SRB measures as zero-noise limits. Ergod. Theory Dyn. Syst. 25(4), 1115–1138 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Corrected reprint of 2nd (1998) edn. Stochastic Modelling and Applied Probability, vol. 38. Springer, Berlin (2010)

    Google Scholar 

  27. Denker, M., Nicol, M.: Erdös-Rényi laws for hyperbolic dynamical systems. Preprint of Mittag-Leffler Institute (2010)

    Google Scholar 

  28. Dolgopyat, D.: Limit theorems for partially hyperbolic systems. Trans. Am. Math. Soc. 356(4), 1637–1689 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3 part 1), 617–656 (1985)

    Google Scholar 

  30. Erdös, P., Rényi, A.: On a new law of large numbers. J. Anal. Math. 23, 103–111 (1970)

    Article  MATH  Google Scholar 

  31. Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton (1981)

    Book  MATH  Google Scholar 

  32. Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Revised edition. Addison-Wesley, Boston (1968)

    Google Scholar 

  33. Gouëzel, S.: Central limit theorem and stable laws for intermittent maps. Probab. Theory Relat. Fields 128(1), 82–122 (2004)

    Article  MATH  Google Scholar 

  34. Gouëzel, S.: Sharp polynomial estimates for the decay of correlations. Isr. J. Math. 139, 29–65 (2004)

    Article  MATH  Google Scholar 

  35. Gouëzel, S.: Berry–Esseen theorem and local limit theorem for non uniformly expanding maps. Ann. Inst. H. Poincaré Probab. Statist. 41(6), 997–1024 (2005)

    Article  MATH  Google Scholar 

  36. Gouëzel S.: Almost sure invariance principle for dynamical systems by spectral methods. Ann. Probab. 38(4), 1639–1671 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hall, P., Heyde, C. C.: Martingale Limit Theory and its Application. Probability and Mathematical Statistics. Academic, New York (1980)

    MATH  Google Scholar 

  38. Hasselblatt, B., Katok, A.: Handbook of Dynamical Systems, vol. 1A. North-Holland, Amsterdam (2002)

    Google Scholar 

  39. Hasselblatt, B., Katok, A.: Handbook of Dynamical Systems, vol. 1B. Elsevier, Amsterdam (2006)

    Google Scholar 

  40. Hennion, H., Hervé, L.: Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Mathematics, vol. 1766. Springer, Berlin (2001)

    Google Scholar 

  41. Hunt, B.R., Kennedy, J.A., Li, T.-Y., Nusse, H.E.: The Theory of Chaotic Attractors. Springer, New York (2004) (Dedicated to James A. Yorke in commemoration of his 60th birthday)

    Book  MATH  Google Scholar 

  42. Kachurovski\uı, A. G.: Rates of convergence in ergodic theorems. Russ. Math. Surv. 51(4), 653–703 (1996)

    Article  Google Scholar 

  43. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  44. Kifer, Y.: Nonconventional limit theorems. Probab. Theory Relat. Fields 148(1–2), 71–106 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Krengel, U.: Ergodic theorems. De Gruyter Studies in Mathematics, vol. 6. de Gruyter, Berlin (1985)

    Google Scholar 

  46. Lacey, M., Philipp, W.: A note on the almost sure central limit theorem. Stat. Probab. Lett. 9(3), 201–205 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  47. Lalley, S., Nobel, A. B.: Denoising deterministic time series. Dyn. Partial Differ. Equ. 3(4), 259–279 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  48. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence (2001)

    Google Scholar 

  49. Melbourne, I.: Large and moderate deviations for slowly mixing dynamical systems. Proc. Am. Math. Soc. 137(5), 1735–1741 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  50. Melbourne, I., Nicol, M.: Large deviations for nonuniformly hyperbolic systems. Trans. Am. Math. Soc. 360(12), 6661–6676 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Melbourne, I., Nicol, M.: A vector-valued almost sure invariance principle for hyperbolic dynamical systems. Ann. Probab. 37(2), 478–505 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  52. Philipp, W., Stout, W.: Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random Variables. Memoirs of the American Mathematical Society, issue 2, no. 161. American Mathematical Society, Providence (1975)

    Google Scholar 

  53. Rey-Bellet, L., Young, L.-S.: Large deviations in non-uniformly hyperbolic dynamical systems. Ergod. Theory Dyn. Syst. 28(2), 587–612 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  54. Sarig, O.: Subexponential decay of correlations. Invent. Math. 150(3), 629–653 (2002) (English summary)

    Article  MATH  MathSciNet  Google Scholar 

  55. Young, L.-S.: Decay of correlations for certain quadratic maps. Comm. Math. Phys. 146(1), 123–138 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  56. Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. Second Ser. 147(3), 585–650 (1998)

    Article  MATH  Google Scholar 

  57. Young, L.-S.: Recurrence times and rates of mixing. Isr. J. Math. 110, 153–188 (1999)

    Article  MATH  Google Scholar 

  58. Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5–6), 733–754 (2002) (Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

The author thanks Sébastien Gouëzel for useful comments. He also thanks Cesar Maldonado and Mike Todd for a careful reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-René Chazottes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chazottes, JR. (2015). Fluctuations of Observables in Dynamical Systems: From Limit Theorems to Concentration Inequalities. In: González-Aguilar, H., Ugalde, E. (eds) Nonlinear Dynamics New Directions. Nonlinear Systems and Complexity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-09867-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09867-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09866-1

  • Online ISBN: 978-3-319-09867-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics