Phase Control of Chaotic Maps

Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 12)

Abstract

The phase control is a well-known control method that has been typically applied to periodically driven dynamical systems. Its application allows controlling them through the phase difference between the forcing term and another harmonic perturbation. In the current chapter, we focus on the application of this control method to maps. In particular, we analyze two paradigmatic maps: the bouncing ball map and the Hénon map. As a result, we observe that the application of the phase control can suppress or enhance the chaotic behavior on them. We also analyze the crisis induced intermittency in the bouncing ball map when the phase of the control signal is varied. Finally, the scaling behavior of the average Lyapunov exponents near the phase induced crisis is studied. Future applications of the phase control method are also discussed.

Notes

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation under Project No. FIS2013-40653-P.

References

  1. 1.
    Andrievskii, B.R., Fradkov, A.L.: Control of chaos: Methods and applications. II. Applications. Autom. Remote Control 65, 505–533 (2004)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Brahic, H.: Numerical study of a simple dynamical system. 1. The associated plane area-preserving mapping. Astron. Astrophys. 12, 98–110 (1971)MATHGoogle Scholar
  3. 3.
    Braiman, Y., Goldhirsch, I.: Taming chaotic dynamics with weak periodic perturbations. Phys. Rev. Lett. 66, 2545–2548 (1991)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chitra, R.N., Kuriakose, V.C.: Dynamics of coupled Josephson junctions under the influence of applied fields. Phys. Lett. A 365, 284–289 (2007)CrossRefGoogle Scholar
  5. 5.
    Chitra, R.N., Kuriakose, V.C.: Phase effects on synchronization by dynamical relaying in delay-coupled systems. Chaos 18, Art. 023129 (2008)Google Scholar
  6. 6.
    Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949)CrossRefMATHGoogle Scholar
  7. 7.
    Fradkov, A.L., Evans, R.J.: Control of chaos: Methods and applications in engineering. Annu. Rev. Control 29, 33–56 (2005)CrossRefGoogle Scholar
  8. 8.
    Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Phys. D 7, 181–200 (1983)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A.: Critical exponents for crisis-induced intermittency. Phys. Rev. A 36, 5365–5380 (1987)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Greenman, J.V., Pasour, V.B.: Phase control of resonant systems: Interference, chaos and high periodicity. J. Theor. Biol. 278, 74–86 (2011)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, New York (1983)CrossRefMATHGoogle Scholar
  12. 12.
    Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)CrossRefMATHGoogle Scholar
  13. 13.
    Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84, 173–189 (1982)CrossRefMATHGoogle Scholar
  14. 14.
    Hsu, R.R., Su, H.T., Chern, J.L., Chen, C.C.: Conditions to control chaotic dynamics by weak periodic perturbation. Phys. Rev. Lett. 78, 2936–2939 (1997)CrossRefGoogle Scholar
  15. 15.
    Ibarz, B., Casado, J.M., Sanjuán, M.A.F.: Map-based models in neuronal dynamics. Phys. Rep. 501, 1–74 (2011)CrossRefGoogle Scholar
  16. 16.
    Leonel, E.D., McClintock, P.V.E.: Effect of a frictional force on the Fermi–Ulam model. J. Phys. A: Math. Gen. 39, 11399–11415 (2006)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Lieberman, M.A., Lichtenberg, A.J.: Stochastic and adiabatic behavior of particles accelerated by periodic forces. Phys. Rev. A 5, 1852–1866 (1972)CrossRefGoogle Scholar
  18. 18.
    Mehra, V., Ramaswamy, R.: Maximal Lyapunov exponent at crises. Phys. Rev. E 53, 3420–3424 (1996)CrossRefGoogle Scholar
  19. 19.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Pompe, B., Leven, R.W.: Behaviour of Lyapunov exponents near crisis points in the dissipative standard map. Phys. Scr. 38, 651–656 (1988)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Sanjuán, M.A.F.: Using nonharmonic forcing to switch the periodicity in nonlinear systems. Phys. Rev. E 58, 4377–4382 (1998)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Seoane, J.M., Zambrano, S., Euzzor, S., Meucci, R., Arecchi, F.T., Sanjuán, M.A.F.: Avoiding escapes in open dynamical systems using phase control. Phys. Rev. E 78, Art. 016205 (2008)Google Scholar
  23. 23.
    Stynes, D., Hanan, W.G., Pouryahya, S., Heffernan, D.M.: Scaling relations and critical exponents for two dimensional two parameter maps. Eur. Phys. J. B 77, 469–478 (2010)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Ulam, S.M.: On some statistical properties of dynamical systems. In: Cam, L.M.L., Neyman, J., Scott, E. (eds.) Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (University of California, Berkeley, 20 June–30 July 1960), vol. 3, pp. 315–320. University of California Press, Berkeley (1961)Google Scholar
  25. 25.
    Zambrano, S., Brugioni, S., Allaria, E., Leyva, I., Meucci, R., Sanjuán, M.A.F., Arecchi, F.T.: Numerical and experimental exploration of phase control of chaos. Chaos 16, Art. 013111 (2006)Google Scholar
  26. 26.
    Zambrano, S., Mariño, I.P., Salvadori, F., Meucci, R., Sanjuán, M.A.F., Arecchi, F.T.: Phase control of intermittency in dynamical systems. Phys. Rev. E 74, 01620–2 (2006)CrossRefGoogle Scholar
  27. 27.
    Zambrano, S., Seoane, J.M., Mariño, I.P., Sanjuán, M.A.F., Meucci, R.: Phase Control in Nonlinear Systems, Chap. 6, pp. 147–188. World Scientific, Singapore (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de FísicaUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations