Skip to main content

Hydra: An Energy-Efficient Programmable Cryptographic Coprocessor Supporting Elliptic-Curve Pairings over Fields of Large Characteristics

  • Conference paper
Book cover Advances in Information and Computer Security (IWSEC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8639))

Included in the following conference series:

  • 790 Accesses

Abstract

Bilinear pairings on elliptic curves have many applications in cryptography and cryptanalysis. Pairing computation is more complicated compared to that of other popular public-key cryptosystems. Efficient implementation of cryptographic pairing, both software- and hardware-based approaches, has thus received increasing interest. In this paper, we focus on hardware implementation and present the design of Hydra, an energy-efficient programmable cryptographic coprocessor that supports various pairings over fields of large characteristics. We also present several implementations of Hydra, among which the smallest only uses 116 K gates when synthesized in TSMC 90 nm standard cell library. Despite the extra programmability, our design is competitive compared even with specialized implementations in terms of time-area-cycle product, a common figure of merit that provides a good measure of energy efficiency. For example, it only takes 3.04 ms to compute an optimal ate pairing over Barreto-Naehrig curves when the chip operates at 200 MHz. This is certainly a very small time-area-cycle product among all hardware implementations of cryptographic pairing in the current literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal of Cryptology 17(4), 297–319 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cha, J.C., Cheon, J.H.: An identity-based signature from gap Diffie-Hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Cheung, R.C.C., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede, I., Yao, G.X.: FPGA implementation of pairings using residue number system and lazy reduction. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 421–441. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Cordes, D., Marwedel, P., Mallik, A.: Automatic parallelization of embedded software using hierarchical task graphs and integer linear programming. In: CODES+ISSS, Montreal, QC, Canada, pp. 267–276 (2010)

    Google Scholar 

  7. Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over Barreto-Naehrig curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. J. Fan, F. Vercauteren, and I. Verbauwhede. Faster \(\mathbb{F}\_p\)-arithmetic for cryptographic pairings on Barreto-Naehrig curves. In CHES 2009, pages 240–253. Lausanne, Switzerland, 2009.

    Chapter  Google Scholar 

  9. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Mathematics of Computation 62, 865–874 (1994)

    MATH  MathSciNet  Google Scholar 

  10. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: High speed flexible pairing cryptoprocessor on FPGA platform. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 450–466. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Ghosh, S., Roychowdhury, D., Das, A.: High speed cryptoprocessor for η T pairing on 128-bit secure supersingular elliptic curves over characteristic two fields. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS-IV. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras, D., Ascheid, G., Mathar, R.: Designing an ASIP for cryptographic pairings over Barreto-Naehrig curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 254–271. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory 39(5), 1639–1646 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17(4), 235–261 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44, 519–521 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nikhil, R.: Bluespec System Verilog: efficient, correct RTL from high level specifications. In: MEMOCODE 2004, San Diego, CA, USA, pp. 69–70 (2004)

    Google Scholar 

  18. Schwabe, P.: Pairing computation on BN curves, http://cryptojedi.org/crypto/#bnpairings

  19. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1), 455–461 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chang, YA., Hong, WC., Hsiao, MC., Yang, BY., Wu, AY., Cheng, CM. (2014). Hydra: An Energy-Efficient Programmable Cryptographic Coprocessor Supporting Elliptic-Curve Pairings over Fields of Large Characteristics. In: Yoshida, M., Mouri, K. (eds) Advances in Information and Computer Security. IWSEC 2014. Lecture Notes in Computer Science, vol 8639. Springer, Cham. https://doi.org/10.1007/978-3-319-09843-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09843-2_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09842-5

  • Online ISBN: 978-3-319-09843-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics