Arrow’s Theorem and the Gibbard-Satterthwaite Theorem

  • W. D. Wallis
Chapter

Abstract

In many voting systems, each voter must produce a ranked preference order of all candidates mentioned, and no ties are allowed. Such systems are called ordinal . However some voting systems, called cardinal , allow the voters to evaluate candidates separately, and a voter could say two candidates were equal. For the moment we shall concentrate on ordinal systems; cardinal systems will be studied in Chap.  7.

References

  1. 1.
    Arrow, K.J.: A difficulty in the concept of social welfare, J. Political Econ. 58, 328–346 (1950)CrossRefGoogle Scholar
  2. 2.
    Arrow, K.J.: Social Choice and Individual Values, 1st edn. Wiley, New York (1951)MATHGoogle Scholar
  3. 3.
    Arrow, K.J.: Social Choice and Individual Values, 2nd edn. Wiley, New York (1963)Google Scholar
  4. 4.
    Black, D.: The Theory of Committees and Elections. Cambridge University Press, Cambridge (1958).MATHGoogle Scholar
  5. 5.
    Banzhaf, J.F.: Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev. 19, 317–343 (1965)Google Scholar
  6. 6.
    Barberà, S., Peleg, B.: Strategy-proof voting schemes with continuous preferences. Soc. Choice Welf. 7, 31–38 (1990)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Benoît, J.-P.: The Gibbard–Satterthwaite theorem: a simple proof. Econ. Lett. 69, 319–322 (2000)CrossRefMATHGoogle Scholar
  8. 8.
    Bonner, A.: Doctor Illuminatus: A Ramon Llull Reader. Princeton University Press, Princeton (1993)Google Scholar
  9. 9.
    Brams, S.J.: Paradoxes in Politics: An Introduction to the Non-obvious in Political Science. Free Press, New York (1976)Google Scholar
  10. 10.
    Brams, S.J., Fishburn, P.C.: Approval Voting, 2nd edn. Springer, New York (2007)MATHGoogle Scholar
  11. 11.
    de Condorcet, M.: Essai sur l’Application de l’Analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale, Paris (1785)Google Scholar
  12. 12.
    Coombs, C.H.: A Theory of Data. Wiley, New York (1964)Google Scholar
  13. 13.
    Droop, H.R.: On methods of electing representatives. J. Stat. Soc. Lond. 44, 141–196 (1881). (With discussion, 197–202), Reprinted in Voting Matters 24, 7–46 (2007)Google Scholar
  14. 14.
    Fishkin, J.S.: The Voice of the People: Public Opinion and Democracy. Yale University Press, New Haven (1964)Google Scholar
  15. 15.
    Geanakoplos, J.: Three brief proofs of Arrow’s impossibility theorem. Econ. Theory 26, 211–215 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41, 587–600 (1973)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
  18. 18.
    May, K.: A set of independent necessary and sufficient conditions for simple majority decisions. Econometrica 20, 680–684 (1952)CrossRefMATHGoogle Scholar
  19. 19.
    McLean, I., Nanson, E.J.: social choice and electoral reform. Aust. J. Pol. Sci. 31, 369–385 (1996)Google Scholar
  20. 20.
    Ninjbat, U.: Another direct proof for the Gibbard–Satterthwaite theorem. Econ. Lett. 116, 418–421 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
  22. 22.
    Penrose, L.: The elementary statistics of majority voting. J. R. Stat. Soc. 109, 53–57 (1946)CrossRefGoogle Scholar
  23. 23.
  24. 24.
  25. 25.
    Satterthwaite, M.A.: Strategy-proofness and Arrow’s conditions: existence and correspondence theorems for voting procedures and social welfare functions. J. Econ. Theory 10, 187–217 (1975)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Shapley, L.S., Shubik, R.: A method for evaluating the distribution of power in a committee system. Am. Pol. Sci. Rev. 48, 787–792 (1954)CrossRefGoogle Scholar
  27. 27.
    Solgård, T.A., Landskroener, P.: Municipal voting system reform: overcoming the legal obstacles. http://www.mnbar.org/benchandbar/2002/oct02/voting.htm
  28. 28.
    Straffin, P.D., Jr.: Topics in the Theory of Voting. Birkhäuser, Boston (1980)MATHGoogle Scholar
  29. 29.
    Taylor, A.: The manipulability of voting systems. Am. Math. Mon. 109, 321–337 (2002)CrossRefMATHGoogle Scholar
  30. 30.
    Taylor, A.: A paradoxical Pareto frontier in the cake-cutting context. Math. Soc. Sci. 50, 227–233 (2005)CrossRefMATHGoogle Scholar
  31. 31.
    Taylor A.D., Pacelli, A.M.: Mathematics and Politics, 2nd edn. Springer, (2008)Google Scholar
  32. 32.
  33. 33.
  34. 34.
  35. 35.
  36. 36.
    Woodall, D.R.: Monotonicity and single-seat election rules. Voting Matters 6, 9–14 (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • W. D. Wallis
    • 1
  1. 1.Department of MathematicsSouthern Illinois UniversityEvansvilleUSA

Personalised recommendations