Skip to main content

A New Strategy of ALA-Photodynamic Cancer Therapy: Inhibition of ABC Transporter ABCG2

  • Chapter
  • First Online:
Resistance to Targeted ABC Transporters in Cancer

Abstract

Photodynamic therapy (PDT) is a clinical tool for treating various tumors. PDT is achieved by a photon-induced physicochemical reaction that is induced by excitation of porphyrins by exposure to light and the subsequent generation of singlet oxygen (1O2) and other reactive oxygen species. Recently, 5-aminolevulinic acid (ALA)-based PDT has been developed as an anticancer treatment whereby ALA is orally administered as the precursor of protoporphyrin IX (PpIX) to induce the biosynthesis and accumulation of PpIX in cancer cells. Recent studies, however, provide evidence that the ABC transporter ABCG2 plays a pivotal role in regulating the cellular accumulation of PpIX in cancer cells and thereby affects the efficacy of ALA-based PDT. In response to the photoreaction of porphyrin leading to oxidative stress, the NF-E2-related transcription factor (Nrf2) can transcriptionally upregulate many target genes, including those for metabolizing enzymes and transporters essential for cellular defense. Whereas Nrf2 upregulates transcription of the ABCG2 gene to confer cancer cells resistance, several protein kinase inhibitors reportedly interfere with the transport function of ABCG2. In fact, gefitinib inhibits ABCG2-mediated porphyrin efflux from cancer cells to enhance the efficacy of PDT in vitro. Thus, it is of great interest to develop ABCG2-specific inhibitors that are clinically applicable to photodynamic cancer therapy. Hitherto, we have performed high-speed screening, quantitative structure–activity relationship (QSAR) analysis, and in vivo validation to identify potent ABCG2-inhibitors. This chapter addresses such a new approach to improve ALA-based photodynamic cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALA:

5-Aminolevulinic acid

PDT:

Photodynamic therapy

PpIX:

Protoporphyrin IX

Nrf2:

NF-E2-related transcription factor

1O2 :

Singlet oxygen

ROS:

Reactive oxygen species

QSAR:

Quantitative structure-activity relationship

HO-1:

Hemeoxigenase

PKC:

Protein kinase C

References

  1. Adachi T, Nakagawa H, Chung I, et al. Nrf2-dependent and -independent induction of ABC transporters ABCC1, ABCC2, and ABCG2 in HepG2 cells under oxidative stress. J Exp Ther Oncol. 2007;6:335–48.

    CAS  PubMed  Google Scholar 

  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. An R, Hagiya Y, Tamura A, et al. Cellular phototoxicity evoked through the inhibition of human ABC transporter ABCG2 by cyclin-dependent kinase inhibitors in vitro. Pharm Res. 2009;26:449–58.

    Article  CAS  PubMed  Google Scholar 

  4. Andreadi CK, Howells LM, Atherfold PA, et al. Involvement of Nrf2, p38, B-Raf, and nuclear factor-kappaB, but not phosphatidylinositol 3-kinase, in induction of hemeoxygenase-1 by dietary polyphenols. Mol Pharmacol. 2006;69:1033–40.

    CAS  PubMed  Google Scholar 

  5. Basseville A, Bates SE, Figg WD, et al. BCRP (ABCG2). In: Ishikawa T, Kim RB, König J, editors. Pharmacogenomics of human drug transporters: clinical impacts. Hoboken: Wiley; 2013. p. 311–49.

    Chapter  Google Scholar 

  6. Bloom DA, Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem. 2003;278:44675–82.

    Article  CAS  PubMed  Google Scholar 

  7. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  CAS  PubMed  Google Scholar 

  8. Brehmer D, Greff Z, Godl K, et al. Cellular targets of gefitinib. Cancer Res. 2005;65:379–82.

    CAS  PubMed  Google Scholar 

  9. Busch TM, Hahn SM. Multidrug resistance in photodynamic therapy. Cancer Biol Ther. 2005;4:195–6.

    Article  CAS  PubMed  Google Scholar 

  10. Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta. 2007;1776:86–107.

    CAS  PubMed  Google Scholar 

  11. Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.

    Article  CAS  PubMed  Google Scholar 

  12. Cullinan SB, Zhang D, Hannink M, et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003;23:7198–209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem. 2004;279:20108–17.

    Article  CAS  PubMed  Google Scholar 

  14. Dean M, Fojo T, Bates SE. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.

    Article  CAS  PubMed  Google Scholar 

  15. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95:15665–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3:380–7.

    Article  CAS  PubMed  Google Scholar 

  17. Döring F, Walter J, Will J, et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest. 1998;101: 2761–7.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.

    Article  CAS  PubMed  Google Scholar 

  19. Hagiya Y, Adachi T, Ogura S, et al. Nrf2-dependent induction of human ABC transporter ABCG2 and hemeoxygenase-1 in HepG2 cells by photoactivation of porphyrins: biochemical implications for cancer cell response to photodynamic therapy. J Exp Ther Oncol. 2008;7:153–67.

    CAS  PubMed  Google Scholar 

  20. Hagiya H, Endo Y, Yonemura Y, et al. Pivotal role of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based phototoxicity of gastric cancer cells in vitro. Photodiagnosis Photodyn Ther. 2012;9:204–14.

    Article  CAS  PubMed  Google Scholar 

  21. Hintze KJ, Katoh Y, Igarashi K, et al. Bach1 repression of ferritin and thioredoxin reductase1 is heme-sensitive in cells and in vitro and coordinates expression with heme oxygenase1, beta-globin, and NADP(H) quinone (oxido) reductase1. J Biol Chem. 2007;282:34365–71.

    Article  CAS  PubMed  Google Scholar 

  22. Huang WC, Chen YJ, Li LY, et al. Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J Biol Chem. 2011;286:20558–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Igarashi K, Sun J. The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal. 2006;8:107–18.

    Article  CAS  PubMed  Google Scholar 

  24. Inoue Y, Ikegami Y, Sano K, et al. Gefitinb enhances the antitumor activity of CPT-11 in vitro and in vivo by inhibiting ABCG2 but not ABCB1: a new clue to circumvent gastrointestinal toxicity risk. Chemotherapy. 2014;59:260–72.

    Article  Google Scholar 

  25. Inoue Y, Ikegami Y, Kajimoto Y, et al. Inhibition of human ABC transporter ABCG2 by gefitinib to enhance the efficacy of ALA-photodynamic therapy of brain tumor: learning from in vitro and in vivo experiments. ALA Porphyrin Sci. 2013;1:27–35.

    Google Scholar 

  26. Ishikawa T, Tamura A, Saito H, et al. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design. Naturwissenschaften. 2005;92: 451–63.

    Article  CAS  PubMed  Google Scholar 

  27. Ishikawa T, Nakagawa H. Human ABC transporter ABCG2 in cancer chemotherapy and pharmacogenomics. J Exp Ther Oncol. 2009;8:5–24.

    CAS  PubMed  Google Scholar 

  28. Ishikawa T, Nakagawa H, Hagiya Y, et al. Key role of human ABC transporter ABCG2 in photodynamic therapy and photodynamic diagnosis. Adv Pharm Sci. 2010;2010:587306. doi:10.1155/2010/587306.

    Google Scholar 

  29. Ishikawa T, Takahashi K, Ikeda N, et al. Transporter-mediated drug interaction strategy for ALA-based photodynamic diagnosis of malignant brain tumor: molecular design of ABCG2 inhibitors. Pharmaceutics. 2011;3:615–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ishikawa T, Kajimoto Y, Sun W, et al. Role of Nrf2 in cancer photodynamic therapy: regulation of human ABC transporter ABCG2. J Pharm Sci. 2013;102:3058–69.

    Article  CAS  PubMed  Google Scholar 

  31. Itoh K, Igarashi K, Hayashi N, et al. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol. 1995;15:4184–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Kang KW, Lee SJ, Park JW, et al. Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress. Mol Pharmacol. 2002;62:1001–10.

    Article  CAS  PubMed  Google Scholar 

  33. Kang KA, Lee KH, Park JW, et al. Triphlorethol-A induces heme oxygenase-1 via activation of ERK and NF-E2 related factor 2 transcription factor. FEBS Lett. 2007;581:2000–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kitamuro T, Takahashi K, Ogawa K, et al. Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem. 2003;278:9125–33.

    Article  CAS  PubMed  Google Scholar 

  35. Krishnamurthy P, Schuetz JD. The role of ABCG2 and ABCB6 in porphyrin metabolism and cell survival. Curr Pharm Biotechnol. 2011;12:647–55.

    Article  CAS  PubMed  Google Scholar 

  36. Kobayashi A, Kang MI, Watai Y, et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol. 2006;26:221–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kocanova S, Buytaert E, Matroule JY, et al. Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis. 2007;12:731–41.

    Article  CAS  PubMed  Google Scholar 

  38. Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul. 2006;46:113–40.

    Article  CAS  PubMed  Google Scholar 

  39. Krishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114:345–58.

    Article  CAS  PubMed  Google Scholar 

  40. Kruyt FA, Schuringa JJ. Apoptosis and cancer stem cells: implications for apoptosis targeted therapy. Biochem Pharmacol. 2010;80:423–30.

    Article  CAS  PubMed  Google Scholar 

  41. Latunde-Dada GO, Simpson RJ, McKie AT. Recent advances in mammalian haem transport. Trends Biochem Sci. 2006;31:182–8.

    Article  CAS  PubMed  Google Scholar 

  42. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    Article  CAS  PubMed  Google Scholar 

  43. Liu W, Baer MR, Bowman MJ, et al. The tyrosine kinase inhibitor imatinib mesylate enhances the efficacy of photodynamic therapy by inhibiting ABCG2. Clin Cancer Res. 2007;13: 2463–70.

    Article  CAS  PubMed  Google Scholar 

  44. Martin D, Rojo AI, Salinas M, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem. 2004;279:8919–29.

    Article  CAS  PubMed  Google Scholar 

  45. Meyer zu Schwabedissen HE, Grube M, Dreisbach A, et al. Epidermal growth factor-mediated activation of the map kinase cascade results in altered expression and function of ABCG2 (BCRP). Drug Metab Dispos. 2006;34:524–33.

    Article  CAS  PubMed  Google Scholar 

  46. Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A. 1994;91:9926–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10:549–57.

    Article  CAS  PubMed  Google Scholar 

  48. Nakano I, Kornblum HI. Methods for analysis of brain tumor stem cell and neural stem cell self-renewal. Methods Mol Biol. 2009;568:37–56.

    CAS  PubMed  Google Scholar 

  49. Nguyen T, Sherratt PJ, Nioi P, et al. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1. J Biol Chem. 2005;280:32485–92.

    Article  CAS  PubMed  Google Scholar 

  50. Novotny A, Xiang J, Stummerm W, et al. Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. J Neurochem. 2000;75:321–8.

    Article  CAS  PubMed  Google Scholar 

  51. O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.

    Article  PubMed  Google Scholar 

  52. Ogawa K, Sun J, Taketani S, et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 2001;20:2835–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Oyake T, Itoh K, Motohashi H, et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol. 1996;16:6083–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Özvegy-Laczka C, Hegedus T, Varady G, et al. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol. 2004;65:1485–95.

    Article  PubMed  Google Scholar 

  55. Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006;25:1696–708.

    Article  CAS  PubMed  Google Scholar 

  56. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104:973–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Reichard JF, Motz GT, Puga A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res. 2007;35:7074–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  CAS  PubMed  Google Scholar 

  59. Robey RW, Steadman K, Polgar O, et al. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther. 2005;4:187–94.

    Article  CAS  PubMed  Google Scholar 

  60. Robey RW, Polgar O, Deeken J, et al. ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev. 2007;26:39–57.

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez L, Batlle A, Di Venosa G, Casas A, et al. Study of the mechanisms of uptake of 5-aminolevulinic acid derivatives by PEPT1 and PEPT2 transporters as a tool to improve photodynamic therapy of tumours. Int J Biochem Cell Biol. 2006;38:1530–9.

    Article  CAS  PubMed  Google Scholar 

  62. Saito H, Hirano H, Nakagawa H, et al. A new strategy of high-speed screening and quantitative structure-activity relationship analysis to evaluate human ATP-binding cassette transporter ABCG2-drug interactions. J Pharmacol Exp Ther. 2006;317:1114–24.

    Article  CAS  PubMed  Google Scholar 

  63. Saito H, Ishikawa T. QSAR analysis and MO calculation to predict drug interactions with human ABC transporter ABCG2. Curr Trends Med Chem. 2009;6:19–35.

    CAS  Google Scholar 

  64. Shan Y, Lambrecht RW, Donohue SE, et al. Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J. 2006;20:2651–3.

    Article  CAS  PubMed  Google Scholar 

  65. Singh A, Wu H, Zhang P, et al. Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol Cancer Ther. 2010;9: 2365–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  67. Stewart CF, Leggas M, Schuetz JD, et al. Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res. 2004;64:7491–9.

    Article  CAS  PubMed  Google Scholar 

  68. Sun J, Hoshino H, Takaku K, et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 2002;21:5216–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Sun J, Brand M, Zenke Y, et al. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci U S A. 2004;101:1461–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Sun W, Kajimoto Y, Miyatake S, et al. Gefitinib enhances the efficacy of photodynamic therapy using 5-aminolevulinic acid in malignant brain tumor cells. Photodiagnosis Photodyn Ther. 2013;10:42–50.

    Article  CAS  PubMed  Google Scholar 

  71. Suzuki H, Tashiro S, Hira S, et al. Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. EMBO J. 2004;23:2544–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Tamura A, Watanabe M, Saito H, et al. Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol. 2006;70:287–96.

    CAS  PubMed  Google Scholar 

  73. Tamura A, Onishi Y, An R, et al. In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs. Drug Metab Pharmacokinet. 2007;22:428–40.

    Article  CAS  PubMed  Google Scholar 

  74. Tamura A, An R, Hagiya Y, et al. Drug-induced phototoxicity evoked by inhibition of human ABC transporter ABCG2: development of in vitro high-speed screening systems. Expert Opin Drug Metab Toxicol. 2008;4:255–72.

    Article  CAS  PubMed  Google Scholar 

  75. Toyoda Y, Hagiya Y, Adachi T, et al. MRP class of human ABC transporters: historical background and new research directions. Xenobiotica. 2008;38:833–62.

    Article  CAS  PubMed  Google Scholar 

  76. Tsiftsoglou AS, Tsamadou AI, Papadopoulou LC. Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol Ther. 2006;111:327–45.

    Article  CAS  PubMed  Google Scholar 

  77. Wakabayashi K, Tamura A, Saito H, et al. Human ABC transporter ABCG2 in xenobiotic protection and redox biology. Drug Metab Rev. 2006;38:371–91.

    Article  CAS  PubMed  Google Scholar 

  78. Wakabayashi K, Nakagawa H, Tamura A, et al. Intramolecular disulfide bond is a critical checkpoint determining degradative fates of ABC transporter ABCG2 protein. J Biol Chem. 2007;282:27841–6.

    Article  CAS  PubMed  Google Scholar 

  79. Whitaker CJ, Battah SH, Forsyth MJ, et al. Photosensitization of pancreatic tumour cells by delta-aminolaevulinic acid esters. Anticancer Drug Des. 2000;15:161–70.

    CAS  PubMed  Google Scholar 

  80. Yamamoto T, Suzuki T, Kobayashi A, et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol. 2008;28:2758–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Yanase K, Tsukahara S, Asada S, et al. Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther. 2004;3:1119–25.

    CAS  PubMed  Google Scholar 

  82. Zenke-Kawasaki Y, Dohi Y, Katoh Y, et al. Heme induces ubiquitination and degradation of the transcription factor Bach1. Mol Cell Biol. 2007;27:6962–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Takehiro Fukami and Toshio Goto (RIKEN Program for Drug Discovery and Medical Technology Platforms, Japan) as well as Drs. Tohru Tanaka and Motowo Nakajima (SBI Pharma Inc. Japan) for their valuable advice and generous support. Studies in the authors’ laboratories were supported, in part, by a grant of Exploratory Research (No. 23650619 TI) from the Japanese Society for the Promotion of Science (JSPS) as well as by a Grant-in-Aid for Scientific Research (C) (No. 23592147 T.K.) and (B) (No. 23390355 S.-I.M.) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihisa Ishikawa Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ishikawa, T. et al. (2015). A New Strategy of ALA-Photodynamic Cancer Therapy: Inhibition of ABC Transporter ABCG2. In: Efferth, T. (eds) Resistance to Targeted ABC Transporters in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09801-2_4

Download citation

Publish with us

Policies and ethics