The Kashiwara-Vergne Method for Lie Groups

  • François Rouvière
Part of the Lecture Notes in Mathematics book series (LNM, volume 2115)


In this chapter we motivate and explain the “Kashiwara-Vergne conjecture” for a Lie algebra and its application to analysis on the corresponding Lie group (transfer of convolution of invariant distributions, Duflo isomorphism). We prove the conjecture in two important special cases (quadratic and solvable Lie algebras), and give a brief overview of the proof by Alekseev and Torossian in the general case.


Local Solvability Tangential Derivation Free Associative Algebra Cyclic Word Cocycle Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Albert, L., Harinck, P., Torossian, C.: Solution non universelle pour le problème KV 78. J. Lie Theory 18, 617–626 (2008); arXiv:0802.2049 (2008)Google Scholar
  2. 2.
    Alekseev, A., Enriquez, B., Torossian, C.: Drinfeld associators, braid groups and explicit solutions of the Kashiwara-Vergne equations. Publ. Math. I.H.E.S. 112, 146–189 (2010); arXiv:0903.4067 (2009)Google Scholar
  3. 3.
    Alekseev, A., Meinrenken, E.: Poisson geometry and the Kashiwara-Vergne conjecture. C. R. Acad. Sci. Paris Série I 335, 723–728 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alekseev, A., Meinrenken, E.: Lie theory and the Chern-Weil homomorphism. Ann. Sci. École Norm. Sup. 38, 303–338 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Alekseev, A., Meinrenken, E.: On the Kashiwara-Vergne conjecture. Invent. Math. 164, 615–634 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Alekseev, A., Petracci, E.: Low order terms of the Campbell-Hausdorff series and the Kashiwara-Vergne conjecture. J. Lie Theory 16, 531–538 (2006); arXiv:math.QA/0508077 (2005)Google Scholar
  7. 7.
    Alekseev, A., Torossian, C.: The Kashiwara-Vergne conjecture and Drinfeld’s associators. Ann. Math. 175, 415–463 (2012); arXiv:0802.4300 (2008)Google Scholar
  8. 8.
    Alekseev, A., Torossian, C.: On triviality of the Kashiwara-Vergne problem for quadratic Lie algebras. C. R. Acad. Sci. Paris Série I, 347, 1231–1236 (2009); arXiv:0909.3743 (2009)Google Scholar
  9. 9.
    Andler, M., Sahi, S., Torossian, C.: Convolution of invariant distributions: proof of the Kashiwara-Vergne conjecture. Lett. Math. Phys. 69, 177–203 (2004); arXiv:math.QA/0104100 (2001).Google Scholar
  10. 10.
    Benoist, Y.: Sur l’algèbre des opérateurs différentiels invariants sur un espace symétrique nilpotent. C. R. Acad. Sci. Paris Série A 295, 59–62 (1982)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bonfiglioli, A., Fulci, R.: Topics in Noncommutative Algebra: The Theorem of Campbell, Baker, Hausdorff and Dynkin. Lecture Notes in Mathematics, vol. 2034. Springer, Heidelberg (2012)Google Scholar
  12. 12.
    Burgunder, E.: Eulerian idempotent and Kashiwara-Vergne conjecture. Ann. Inst. Fourier 58, 1153–1184 (2008); arXiv:math.QA/0612548 (2006)Google Scholar
  13. 13.
    Casas, F., Murua, A.: An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its applications. J. Math. Phys. 50, 033513 (2009); arXiv:0810.2656 (2008)Google Scholar
  14. 14.
    Cattaneo, A., Torossian, C.: Quantification pour les paires symétriques et diagrammes de Kontsevich. Ann. Sci. École Norm. Sup. 41, 789–854 (2008); arXiv:math.RT/0609693 (2006)Google Scholar
  15. 15.
    Cattaneo, A., Rossi, C., Torossian, C.: Biquantization of symmetric pairs and the quantum shift. J. Geom. Phys. 74, 211–250 (2013); arXiv:1105.5973v2 (2012)Google Scholar
  16. 16.
    Dooley, A.H.: Orbital convolutions, wrapping maps and e-functions. In: Proceedings of the Centre for Mathematical Analysis and Its Applications, vol. 39, pp. 42–49. Australian National University Press, Canberra (2001)Google Scholar
  17. 17.
    Dooley, A.H., Rice, J.W.: On contractions of semi-simple Lie groups. Trans. Am. Math. Soc. 289, 185–202 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Duflo, M.: Opérateurs différentiels bi-invariants sur un groupe de Lie. Ann. Sci. École Norm. Sup. 10, 265–288 (1977)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Duflo, M.: Opérateurs différentiels invariants sur un espace symétrique. C. R. Acad. Sci. Paris Série I Math. 289, 135–137 (1979)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Duistermaat, J.J.: On the similarity between the Iwasawa projection and the diagonal part. Mém. Soc. Math. France n 15, 129–138 (1984)Google Scholar
  21. 21.
    Etingof, P., Schiffman, O.: Lectures on Quantum Groups. International Press, Cambridge (1998)zbMATHGoogle Scholar
  22. 22.
    Flensted-Jensen, M., Koornwinder, T.: The convolution structure for Jacobi function expansions. Ark. Mat. 10, 245–262 (1973)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Graczyk, P., Sawyer, P.: On the kernel of the product formula on symmetric spaces. J. Geom. Anal. 14, 653–672 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gray, A., Willmore, T.J.: Mean-value theorems for Riemannian manifolds. Proc. R. Soc. Edinb. 92A, 343–364 (1982)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)zbMATHGoogle Scholar
  26. 26.
    Harish-Chandra: Invariant eigendistributions on a semi-simple Lie group. Trans. Am. Math. Soc. 119, 457–508 (1965)Google Scholar
  27. 27.
    Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978)zbMATHGoogle Scholar
  28. 28.
    Helgason, S.: Groups and Geometric Analysis. Academic Press, Orlando (1984)zbMATHGoogle Scholar
  29. 29.
    Helgason, S.: Geometric Analysis on Symmetric Spaces, 2nd edn. American Mathematical Society, Providence (2008)zbMATHGoogle Scholar
  30. 30.
    Kashiwara, M., Vergne, M.: The Campbell-Hausdorff formula and invariant hyperfunctions. Invent. Math. 47, 249–272 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 2. Interscience Publishers, London (1969)zbMATHGoogle Scholar
  32. 32.
    Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003); arXiv:math.QA/9709040 (1997)Google Scholar
  33. 33.
    Koornwinder, T.: A new proof of a Paley-Wiener type theorem for the Jacobi transform. Arkiv för Mat. 13, 145–159 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Koornwinder, T.: Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, R. (ed.) Special Functions: Group Theoretical Aspects and Applications. D. Reidel, Amsterdam (1984)Google Scholar
  35. 35.
    Koornwinder, T.: Invariant differential operators on nonreductive homogeneous spaces. arXiv:math/0008116 (2000)Google Scholar
  36. 36.
    Lichnerowicz, A.: Opérateurs différentiels invariants sur un espace homogène. Ann. Sci. École Norm. Sup. 81, 341–385 (1964)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Loos, O.: Symmetric Spaces, vol. 1. Benjamin, New York (1969)zbMATHGoogle Scholar
  38. 38.
    Minemura, K.: Invariant differential operators and spherical sections on a homogeneous vector bundle. Tokyo J. Math. 15, 231–245 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Orloff, J.: Invariant Radon transforms on a symmetric space. Trans. Am. Math. Soc. 318, 581–600 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Raïs, M.: Solutions élémentaires des opérateurs différentiels bi-invariants sur un groupe de Lie nilpotent. C. R. Acad. Sci. Paris Série A 273, 495–498 (1971)zbMATHGoogle Scholar
  41. 41.
    Rossi, C.: On the compatibility between cup products, the Alekseev-Torossian connection and the Kashiwara-Vergne conjecture. C. R. Acad. Sci. Paris Série I 350, 823–826, 871–874 (2012); arXiv:1205.7029v3 (2012)Google Scholar
  42. 42.
    Rouvière, F.: Démonstration de la conjecture de Kashiwara-Vergne pour l’algèbre sl(2). C. R. Acad. Sci. Paris Série I 292, 657–660 (1981)zbMATHGoogle Scholar
  43. 43.
    Rouvière, F.: Espaces symétriques et méthode de Kashiwara-Vergne. Ann. Sci. École Norm. Sup. 19, 553–581 (1986)zbMATHGoogle Scholar
  44. 44.
    Rouvière, F.: Invariant analysis and contractions of symmetric spaces I. Compositio Math. 73, 241–270 (1990)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Rouvière, F.: Invariant analysis and contractions of symmetric spaces II. Compositio Math. 80, 111–136 (1991)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Rouvière, F.: Une propriété de symétrie des espaces symétriques. C. R. Acad. Sci. Paris Série I 313, 5–8 (1991)zbMATHGoogle Scholar
  47. 47.
    Rouvière, F.: Fibrés en droites sur un espace symétrique et analyse invariante. J. Funct. Anal. 124, 263–291 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Rouvière, F.: “Trivialité” du problème de Kashiwara-Vergne pour les algèbres de Lie résolubles. C. R. Acad. Sci. Paris Série I 348, 739–742 (2010)CrossRefzbMATHGoogle Scholar
  49. 49.
    Rouvière, F.: Mean value theorems on symmetric spaces, Contemp. Math. 598, 209–219 (2013)CrossRefGoogle Scholar
  50. 50.
    Shimura, G.: Invariant differential operators on hermitian symmetric spaces. Ann. Math. 132, 237–272 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Thompson, R.C.: Proof of a conjectured exponential formula. Linear Multilinear Algebra 19, 187–197 (1986)CrossRefzbMATHGoogle Scholar
  52. 52.
    Torossian, C.: Opérateurs différentiels invariants sur les espaces symétriques, II: L’homomorphisme de Harish-Chandra généralisé. J. Funct. Anal. 117, 174–214 (1993)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Torossian, C.: L’homomorphisme de Harish-Chandra pour les paires symétriques orthogonales et parties radiales des opérateurs différentiels invariants sur les espaces symétriques. Bull. Soc. Math. France 126, 295–354 (1998)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Torossian, C.: Sur la conjecture combinatoire de Kashiwara-Vergne. J. Lie Theory 12, 597–616 (2002)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Torossian, C.: Méthode de Kashiwara-Vergne-Rouvière pour certains espaces symétriques. In: Non-commutative Harmonic Analysis. Progress in Mathematics, vol. 220, pp. 459–486. Birkhaüser, Boston (2004); arXiv:math.QA/0202217 (2002)Google Scholar
  56. 56.
    Torossian, C.: Paires symétriques orthogonales et isomorphisme de Rouvière. J. Lie Theory 15, 79–87 (2005)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Torossian, C.: La conjecture de Kashiwara-Vergne [d’après Alekseev et Meinrenken], Séminaire Bourbaki n 980. Astérisque 317, 441–465 (2008)MathSciNetGoogle Scholar
  58. 58.
    Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. Springer, New York (1984)CrossRefzbMATHGoogle Scholar
  59. 59.
    Vergne, M.: Le centre de l’algèbre enveloppante et la formule de Campbell-Hausdorff. C. R. Acad. Sci. Paris Série I 329, 767–772 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Wallach, N.: Harmonic Analysis on Homogeneous Spaces. Marcel Dekker, New York (1973)zbMATHGoogle Scholar
  61. 61.
    Wolf, J.A.: Spaces of Constant Curvature, 3rd edn. Publish or Perish, Boston (1974)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • François Rouvière
    • 1
  1. 1.Laboratoire J. A. DieudonnéUMR 7351 CNRS Université de Nice - Sophia AntipolisParc ValroseFrance

Personalised recommendations