Exploring Gender Biases with Virtual Patients for High Stakes Interpersonal Skills Training

  • Diego J. Rivera-Gutierrez
  • Regis Kopper
  • Andrea Kleinsmith
  • Juan Cendan
  • Glen Finney
  • Benjamin Lok
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8637)

Abstract

The use of virtual characters in a variety of research areas is widespread. One such area is healthcare. The study presented in this paper leveraged virtual patients to examine whether virtual patients are more likely to be correctly diagnosed due to gender and skin tone. Medical students at the University of Florida College of Medicine interacted with six virtual patients across two sessions. The six virtual patients comprised various combinations of gender and skin tone. Each virtual patient presented with a different cranial nerve injury. The results indicate a significant difference in correct diagnosis according to patient gender for one of the cases. In that case, female patients were correctly diagnosed more frequently than their male counterpart. The description of that case required that the virtual patient present with a visible bruise on the forehead. We hypothesize the results obtained could be due to a transfer of a real world gender bias.

Keywords

virtual patients healthcare virtual humans intelligent agents autonomous agents gender bias user studies cranial nerve palsies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deaton, J.E., Barba, C., Santarelli, T., Rosenzweig, L., Souders, V., McCollum, C., Seip, J., Knerr, B.W., Singer, M.J.: Virtual environment cultural training for operational readiness (vector). Virtual Reality 8(3), 156–167 (2005)CrossRefGoogle Scholar
  2. 2.
    Slater, M., Pertaub, D.P., Barker, C., Clark, D.M.: An experimental study on fear of public speaking using a virtual environment. CyberPsychology & Behavior 9(5), 627–633 (2006)Google Scholar
  3. 3.
    Pan, X., Gillies, M., Barker, C., Clark, D.M., Slater, M.: Socially anxious and confident men interact with a forward virtual woman: an experimental study. PloS One 7(4), e32931 (2012)Google Scholar
  4. 4.
    McRorie, M., Sneddon, I., de Sevin, E., Bevacqua, E., Pelachaud, C.: A model of personality and emotional traits. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA 2009. LNCS, vol. 5773, pp. 27–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    MacDorman, K.F., Coram, J.A., Ho, C.C., Patel, H.: Gender Differences in the Impact of Presentational Factors in Human Character Animation on Decisions in Ethical Dilemmas. Presence 19(3), 213–229 (2010)Google Scholar
  6. 6.
    Zanbaka, C., Goolkasian, P., Hodges, L.: Can a virtual cat persuade you?: the role of gender and realism in speaker persuasiveness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2006)Google Scholar
  7. 7.
    Fiske, S.T.: Stereotyping, prejudice, and discrimination at the seam between the centuries: Evolution, culture, mind, and brain. European Journal of Social Psychology 30(3), 299–322 (2000)Google Scholar
  8. 8.
    Van Ryn, M.: Research on the provider contribution to race/ethnicity disparities in medical care. Medical Care 40(1), I-140 (2002)Google Scholar
  9. 9.
    Cooper, L.A., Roter, D.L., Carson, K.A., Beach, M.C., Sabin, J.A., Greenwald, A.G., Inui, T.S.: The associations of clinicians’ implicit attitudes about race with medical visit communication and patient ratings of interpersonal care. American Journal of Public Health 102(5), 979–987 (2012)Google Scholar
  10. 10.
    Bodenhausen, G.V., Lichtenstein, M.: Social stereotypes and information-processing strategies: The impact of task complexity. Journal of Personality and Social Psychology 52(5), 871 (1987)Google Scholar
  11. 11.
    Sabin, J.A., Rivara, F.P., Greenwald, A.G.: Physician implicit attitudes and stereotypes about race and quality of medical care. Medical Care 46(7), 678–685 (2008)Google Scholar
  12. 12.
    Chapman, K.R., Tashkin, D.P., Pye, D.J.: Gender bias in the diagnosis of copd. CHEST Journal 119(6), 1691–1695 (2001)CrossRefGoogle Scholar
  13. 13.
    Harris, S.R., Kemmerling, R.L., North, M.M.: Brief virtual reality therapy for public speaking anxiety. Cyberpsychology & Behavior 5(6), 543–550 (2002)CrossRefGoogle Scholar
  14. 14.
    Babu, S., Suma, E., Barnes, T., Hodges, L.F.: Can Immersive Virtual Humans Teach Social Conversational Protocols? In: IEEEE Virtual Reality Conference, pp. 215–218 (2007)Google Scholar
  15. 15.
    Deladisma, A.M., Gupta, M., Kotranza, A., Bittner IV, J.G., Imam, T., Swinson, D., Gucwa, A., Nesbit, R., Lok, B., Pugh, C., et al.: A pilot study to integrate an immersive virtual patient with a breast complaint and breast examination simulator into a surgery clerkship. The American Journal of Surgery 197(1), 102–106 (2009)CrossRefGoogle Scholar
  16. 16.
    Johnsen, K., Raij, A., Stevens, A., Lind, D., Lok, B.: The validity of a virtual human experience for interpersonal skills education. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1049–1058. ACM (2007)Google Scholar
  17. 17.
    Kenny, P., Parsons, T.D., Gratch, J., Leuski, A., Rizzo, A.A.: Virtual patients for clinical therapist skills training. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 197–210. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Haider, A.H., Sexton, J., Sriram, N., Cooper, L.A., Efron, D.T., Swoboda, S., Villegas, C.V., Haut, E.R., Bonds, M., Pronovost, P.J., et al.: Association of unconscious race and social class bias with vignette-based clinical assessments by medical students. JAMA 306(9), 942–951 (2011)CrossRefGoogle Scholar
  19. 19.
    Rossen, B., Johnsen, K., Deladisma, A., Lind, S., Lok, B.: Virtual humans elicit skin-tone bias consistent with real-world skin-tone biases. In: Prendinger, H., Lester, J.C., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 237–244. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Hirsh, A.T., Hollingshead, N.A., Matthias, M.S., Bair, M.J., Kroenke, K.: The influence of patient sex, provider sex, and sexist attitudes on pain treatment decisions. The Journal of Pain (2014)Google Scholar
  21. 21.
    Hirsh, A.T., Alqudah, A.F., Stutts, L.A., Robinson, M.E.: Virtual human technology: Capturing sex, race, and age influences in individual pain decision policies. Pain 140(1), 231–238 (2008)CrossRefGoogle Scholar
  22. 22.
    Wandner, L.D., Stutts, L.A., Alqudah, A.F., Craggs, J.G., Scipio, C.D., Hirsh, A.T., Robinson, M.E.: Virtual human technology: patient demographics and healthcare training factors in pain observation and treatment recommendations. Journal of Pain Research 3, 241–247 (2009)Google Scholar
  23. 23.
    Hirsh, A.T., George, S.Z., Robinson, M.E.: Pain assessment and treatment disparities: a virtual human technology investigation. Pain 143(1), 106–113 (2009)CrossRefGoogle Scholar
  24. 24.
    Elderkin-Thompson, V., Waitzkin, H.: Differences in clinical communication by gender. Journal of General Internal Medicine 14(2), 112–121 (1999)CrossRefGoogle Scholar
  25. 25.
    Waitzkin, H.: Information giving in medical care. Journal of Health and Social Behavior, 81–101 (1985)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Diego J. Rivera-Gutierrez
    • 1
  • Regis Kopper
    • 2
  • Andrea Kleinsmith
    • 1
  • Juan Cendan
    • 3
  • Glen Finney
    • 1
  • Benjamin Lok
    • 1
  1. 1.University of FloridaGainesvilleUSA
  2. 2.Duke UniversityDurhamUSA
  3. 3.University of Central FloridaOrlandoUSA

Personalised recommendations