The Right Agent for the Job?

The Effects of Agent Visual Appearance on Task Domain
  • Lazlo Ring
  • Dina Utami
  • Timothy Bickmore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8637)

Abstract

The visual design of virtual agents presents developers with a very large number of choices. We conducted a series of studies using Amazon’s Mechanical Turk that demonstrate that there are no design universals for characters, optimal design of character proportion and rendering style depends on the task domain and user characteristics. Specifically, we found these adjustments to an agent’s appearance directly effected how users rated it based on whether it was discussing social or medical content. The results of this research aim to help create visual guidelines for the development of domain specific virtual agents.

Keywords

Virtual Agents Rendering Styles Character Proportions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashby Plant, E., Baylor, A.L., Doerr, C.E., Rosenberg-Kima, R.B.: Changing middle-school students’ attitudes and performance regarding engineering with computer-based social models. Computers & Education 53(2), 209–215 (2009)CrossRefGoogle Scholar
  2. 2.
    Bailenson, J.N., Blascovich, J., Beall, A.C., Loomis, J.M.: Interpersonal distance in immersive virtual environments. Personality and Social Psychology Bulletin 29(7), 819–833 (2003)CrossRefGoogle Scholar
  3. 3.
    Bailenson, J.N., Swinth, K., Hoyt, C., Persky, S., Dimov, A., Blascovich, J.: The independent and interactive effects of embodied-agent appearance and behavior on self-report, cognitive, and behavioral markers of copresence in immersive virtual environments. Presence: Teleoperators and Virtual Environments 14(4), 379–393 (2005)CrossRefGoogle Scholar
  4. 4.
    Bailenson, J.N., Yee, N.: Digital chameleons automatic assimilation of nonverbal gestures in immersive virtual environments. Psychological Science 16(10), 814–819 (2005)CrossRefGoogle Scholar
  5. 5.
    Baylor, A.L., Kim, Y.: Pedagogical agent design: The impact of agent realism, gender, ethnicity, and instructional role. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 592–603. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Baylor, A.L., Kim, Y.: Simulating instructional roles through pedagogical agents. International Journal of Artificial Intelligence in Education 15(2), 95–115 (2005)Google Scholar
  7. 7.
    Baylor, A.L., Rosenberg-Kima, R.B., Plant, E.A.: Interface agents as social models: the impact of appearance on females’ attitude toward engineering. In: CHI 2006 Extended Abstracts on Human Factors in Computing Systems, pp. 526–531. ACM (2006)Google Scholar
  8. 8.
    Cassell, J., Vilhjálmsson, H.H., Bickmore, T.: Beat: the behavior expression animation toolkit. In: Life-Like Characters, pp. 163–185. Springer (2004)Google Scholar
  9. 9.
    Chen, H., Russell, R., Nakayama, K., Livingstone, M.: Crossing the “uncanny valley”: adaptation to cartoon faces can influence perception of human faces. Perception 39(3), 378 (2010)CrossRefGoogle Scholar
  10. 10.
    Garau, M., Slater, M., Vinayagamoorthy, V., Brogni, A., Steed, A., Sasse, M.A.: The impact of avatar realism and eye gaze control on perceived quality of communication in a shared immersive virtual environment. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 529–536. ACM (2003)Google Scholar
  11. 11.
    Geller, T.: Overcoming the uncanny valley. IEEE Computer Graphics and Applications 28(4), 11–17 (2008)CrossRefGoogle Scholar
  12. 12.
    Guadagno, R.E., Blascovich, J., Bailenson, J.N., Mccall, C.: Virtual humans and persuasion: The effects of agency and behavioral realism. Media Psychology 10(1), 1–22 (2007)Google Scholar
  13. 13.
    Gulz, A., Haake, M., Tärning, B.: Visual gender and its motivational and cognitive effects–a user study. Lund University Cognitive Studies 137 (2007)Google Scholar
  14. 14.
    Han, S., Jiang, Y., Humphreys, G.W., Zhou, T., Cai, P.: Distinct neural substrates for the perception of real and virtual visual worlds. NeuroImage 24(3), 928–935 (2005)CrossRefGoogle Scholar
  15. 15.
    Kang, S.H., Watt, J.H., Ala, S.K.: Social copresence in anonymous social interactions using a mobile video telephone. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2008, pp. 1535–1544. ACM, New York (2008), http://doi.acm.org/10.1145/1357054.1357295 Google Scholar
  16. 16.
    Kim, Y., Baylor, A.L., Shen, E.: Pedagogical agents as learning companions: The impact of agent emotion and gender. Journal of Computer Assisted Learning 23(3), 220–234 (2007)CrossRefGoogle Scholar
  17. 17.
    McDonnell, R., Breidt, M., Bülthoff, H.H.: Render me real?: investigating the effect of render style on the perception of animated virtual humans. ACM Transactions on Graphics (TOG) 31(4), 91 (2012)CrossRefGoogle Scholar
  18. 18.
    Mori, M.: The uncanny valley. Energy 7(4), 33–35 (1970)Google Scholar
  19. 19.
    Pratt, J.A., Hauser, K., Ugray, Z., Patterson, O.: Looking at human–computer interface design: Effects of ethnicity in computer agents. Interacting with Computers 19(4), 512–523 (2007)CrossRefGoogle Scholar
  20. 20.
    Rosenberg-Kima, R.B., Baylor, A.L., Plant, E.A., Doerr, C.E.: The importance of interface agent visual presence: Voice alone is less effective in impacting young women’s attitudes toward engineering. In: de Kort, Y.A.W., IJsselsteijn, W.A., Midden, C., Eggen, B., Fogg, B.J. (eds.) PERSUASIVE 2007. LNCS, vol. 4744, pp. 214–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Schulman, D., Bickmore, T.W., Sidner, C.L.: An intelligent conversational agent for promoting long-term health behavior change using motivational interviewing. In: AAAI Spring Symposium: AI and Health Communication (2011)Google Scholar
  22. 22.
    Thomas, F., Johnston, O., Thomas, F.: The illusion of life: Disney animation. Hyperion, New York (1995)Google Scholar
  23. 23.
    van Vugt, H.C., Konijn, E.A., Hoorn, J.F., Veldhuis, J.: Why fat interface characters are better e-health advisors. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 1–13. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Yee, N., Bailenson, J.N., Rickertsen, K.: A meta-analysis of the impact of the inclusion and realism of human-like faces on user experiences in interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1–10. ACM (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lazlo Ring
    • 1
  • Dina Utami
    • 1
  • Timothy Bickmore
    • 1
  1. 1.College of Computer and Information ScienceNortheastern UniversityBostonUSA

Personalised recommendations