Skip to main content

A Particle Swarm Optimization Algorithm for the Multicast Routing Problem

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 104)

Abstract

In this paper, a new algorithm for the solution of the Multicast Routing Problem based on Particle Swarm Optimization algorithm is presented and analyzed. A review of the most important evolutionary optimization algorithms for the solution of this problem is also given. Three different versions of the proposed algorithm are given and their quality is evaluated with experiments conducted on suitably modified benchmark instances of the Euclidean Traveling Salesman Problem from the TSP library. The results indicated the efficiency of the proposed method.

Keywords

  • Particle Swarm Optimization
  • Local Search
  • Destination Node
  • Particle Swarm Optimization Algorithm
  • Steiner Tree

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-09758-9_7
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-09758-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aarts, E.H.L., Verhoeven, M.G.A.: Genetic local search for the traveling salesman problem. In [3], chapter G9.5, G9.5:1–G9.5:7

    Google Scholar 

  2. Arabshahi, P., Gray, A., Kassabalidis, I., Das, A.: Adaptive routing in wireless communication networks using swarm intelligence. In: Proceedings of the 19th AIAA Int. Commun. Satellite Syst. Conf. (2001)

    Google Scholar 

  3. Bäck, T., Fogel, D.B., Michalewicz, Z. (Eds.): Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  4. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6(4), 467–484 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7, 109–124 (2008)

    Google Scholar 

  6. Baras, J.S., Mehta, H.: A probabilistic emergent routing algorithm for mobile ad hoc networks. In: WiOpt’03: Modeling and Optimization in Mobile, AdHoc and Wireless Networks, Sophia-Antipoli, France, INRIA, March 3–5 2003

    Google Scholar 

  7. Cauvery, N.K., Viswanatha, K.V.: Routing in dynamic network using ants and genetic algorithm. Int. J. Comput. Sci. Network Secur. 9(3), 194–200 (2009)

    Google Scholar 

  8. Chow, C.H.: On multicast path finding algorithms. In: IEEE INFOCOM’91, pp. 1974–1283. IEEE, San Francisco (1991)

    Google Scholar 

  9. Clerc, M.: Particle Swarm Optimization. ISTE, London (2006)

    CrossRef  MATH  Google Scholar 

  10. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    CrossRef  Google Scholar 

  11. Crichigno, J., Baran, B.: Multiobjective multicast routing algorithm for traffic engineering. In: Proceedings of the 13th International Conference on Computer Communication Networks, CCCN 2004, pp. 301–306. IEEE, San Francisco (2004)

    Google Scholar 

  12. Crichigno, J., Baran, B.: Multiobjective multicast routing algorithm. In: Lorenz, P., de Souza, J.N., Dini, P. (eds.), Telecommunications and Networking - ICT 2004. 11th International Conference on Telecommunications, Fortaleza, Brazil, August 1–6, 2004. Proceedings, vol. 3124 of Lecture Notes in Computer Science, pp. 1029–1034. Springer, New York (2004)

    Google Scholar 

  13. Curran, E.: Swarm: Cooperative reinforcement learning for routing in ad-hoc networks. Master’s thesis, University of Dublin, Trinity College, September (2003)

    Google Scholar 

  14. Di Caro, G.: Ant colony optimization and its application to adaptive routing in telecommunication networks. PhD thesis, Université Libre de Bruxelles, Faculté des Sciences Appliquées, September (2004)

    Google Scholar 

  15. Di Caro, G., Dorigo, M.: Antnet: Distributed stigmergetic control for communication networks. J. Artif. Intell. Res. 9, 317–365 (1998)

    MATH  Google Scholar 

  16. Di Caro, G., Dorigo, M.: Two ant colony algorithms for best-effort routing in datagram network. In: Proceedings of the 10th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS), (1998)

    Google Scholar 

  17. Di Caro, G., Dorigo, M.: Ant colonies for adaptive routing in packet-switched communications networks. In Eiben, A.E., Bäck, Th., Schoenauer, M., Schwefel, H.-P. (eds.), Parallel Problem Solving from Nature. PPSN V, vol. 1498 of Lecture Notes in Computer Science, pp. 673–682. Springer, New York (1998)

    Google Scholar 

  18. Di Caro, G.A., Ducatelle, F., Gambardella, L.M.: Theory and practice of ant colony optimization for routing in dynamic telecommunications networks. In: Sala, N., Orsucci, F. (eds.), Reflecting Interfaces: The Complex Coevolution of Information Technology Ecosystems, pp. 185–216. Idea Group, Hershey (2008)

    CrossRef  Google Scholar 

  19. Doar, M., Leslie, I.: How bad is naive multicast routing. In: INFOCOM’93. Proceedings. Twelfth Annual Joint Conference of the IEEE Computer and Communications Societies. Networking: Foundation for the Future, pp. 82–89. IEEE, San Francisco (1993)

    Google Scholar 

  20. Ducatelle, F., Di Caro, G., Gambarella, L.M.: Principles and applications of swarm intelligence for adaptive routing in telecommunications networks. Swarm Intell. 4(3), 173–198 (2010)

    CrossRef  Google Scholar 

  21. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley, Chichester (2007)

    CrossRef  Google Scholar 

  22. Fabregat, R., Donoso, Y., Solano, F., Marzo, J.L.: Multitree routing for multicast flows: A genetic algorithm approach. In: Vitriá, J., Radeva, P., Aguiló, I. (eds.), Recent Advances in Artificial Intelligence Research and Development, pp. 399–405. IOS Press, Amsterdam (2004)

    Google Scholar 

  23. Farooq, M., Di Caro, G.: Routing protocols for next generation networks inspired by collective behaviors of insect societies: An overview. In: Blum, C., Merkle, D. (eds.), Swarm Intelligence: Introduction and Applications, pp. 101–160. Springer, New York (2008)

    CrossRef  Google Scholar 

  24. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  25. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    CrossRef  MATH  Google Scholar 

  26. Hansen, P., Mladenović, N., Moreno-Pérez, J.A.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175, 367–407 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  27. Hwang, R.-H., Do, W.-Y., Yang, S.-C.: Multicast routing based on genetic algorithms. In: WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. INRIA Sophia-Antipolis, France, March 3–5, 2003

    Google Scholar 

  28. Ibaraki, T.: Combination with local search. In: [3], chapter G3.2, D3.2:1–D3.2:5

    Google Scholar 

  29. Ibaraki, T.: Simulated annealing and tabu search. In: [3], chapter D3.5, D3.5:1–D3.5:2

    Google Scholar 

  30. Kassabalidis, I., El-Sharkawi, M.A., Marks II, R.J., Arabshahi, P., Gray, A.A.: Swarm intelligence for routing in communication networks. In: Proceedings of the IEEE Globecom 2001, San Antonio, Texas (2001).

    Google Scholar 

  31. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  32. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm, In: Proceedings of 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104–4108 (1997)

    Google Scholar 

  33. Kompleea, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast routing for multimedia communication. IEEE/ACM Trans. Network. 1(3), 286–292 (1993)

    CrossRef  Google Scholar 

  34. Mukherjee, D., Acharyya, S.: Ant colony optimization techniques applied in network routing problem. Int. J. Comput. Appl. 1(15), 66–73 (2010)

    Google Scholar 

  35. Munetomo, M.: The genetic adaptive routing algorithm. In: Corne, D.W., Oates, M.J., Smith, G.D. (eds.), Telecommunications Optimization: Heuristic and Adaptive Techniques, pp. 151–166. Wiley, Chichester (2000)

    Google Scholar 

  36. Oh, J., Pyo, I., Pedram, M.: Constructing minimal spanning/steiner trees with bounded path length. In: European Design and Test Conference, pp. 244–249 (1996)

    Google Scholar 

  37. Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems in multicast routing. Comput. Oper. Res. 32(8), 1953–1981 (2005)

    CrossRef  MATH  Google Scholar 

  38. Oliveira, C.A.S., Pardalos, P.M., Resende, M.G.C.: Optimization problems in multicast tree construction. In: [43], 701–731

    Google Scholar 

  39. Pinto, D., Barán, B.: Multiobjective multicast routing with ant colony optimization. In: Gaiti, D. (ed.), Network Control and Engineering for QoS, Security and Mobility V, vol. 213 of IFIP International Federation of Information Processing, pp. 101–115. Springer, New York (2006)

    Google Scholar 

  40. Pinto, D., Barán, B., Fabregat, R.: Multi-objective multicast routing based on ant colony optimization. In: López, B., Meléndez, J., Radeva, P., Vitriá, J. (eds), Artificial Intelligence Research and Development, pp. 363–370. IOS Press, Amsterdam (2005)

    Google Scholar 

  41. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. an overview. Swarm Intell. 1, 33–57 (2007)

    Google Scholar 

  42. Purkayastha, P.: Multipath routing algorithms for communication networks: ant routing and optimization based approaches. PhD thesis, Department of Electrical and Computer Engineering, University of Meryland (2009)

    Google Scholar 

  43. Resende, M.G.C., Pardalos, P.M. (eds.): Handbook of Optimization in Telecommunications. Springer, New York (2006)

    MATH  Google Scholar 

  44. Saleem, M., Di Caro, G.A., Farooq, M.: Swarm intelligence based routing protocol for wireless sensor networks: Survey and future directions. Inform. Sci. 181, 4597–4624 (2011)

    CrossRef  Google Scholar 

  45. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of 1998 IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)

    Google Scholar 

  46. Sigel, E., Denby, B., Le Hégarat-Mascle, S.: Application of ant colony optimization to adaptive routing in a leo telecommunications satellite network. Annales des Télecommunications 57(5–6), 520–539 (2002)

    Google Scholar 

  47. Takahashi, H., Mutsuyama, A.: An approximate solution for the steiner problem in graphs. Mathematica Japonica 6, 573–577 (1980)

    Google Scholar 

  48. Tode, H., Sakai, Y., Yamamoto, M., Okada, H., Tezuka, Y.: Multicast routing algorithm for nodal load balancing. In: IEEE INFOCOM’92, pp. 2086–2095. IEEE, San Francisco (1992)

    Google Scholar 

  49. Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Area Comm. 1(3), 286–292 (1988)

    Google Scholar 

  50. Wu, J.J., Hwang, R.-H.: Multicast routing with multiple constraints. Inform. Sci. 124, 29–57 (2000)

    CrossRef  Google Scholar 

  51. Xu, Y., Qu, R., Li, R.: A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems. Ann. Oper. Res. 1–29 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Migdalas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Marinakis, Y., Migdalas, A. (2014). A Particle Swarm Optimization Algorithm for the Multicast Routing Problem. In: Batsyn, M., Kalyagin, V., Pardalos, P. (eds) Models, Algorithms and Technologies for Network Analysis. Springer Proceedings in Mathematics & Statistics, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-09758-9_7

Download citation