Advertisement

Debates with Small Transparent Quantum Verifiers

  • Abuzer Yakaryılmaz
  • A. C. Cem Say
  • H. Gökalp Demirci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8633)

Abstract

We study a model where two opposing provers debate over the membership status of a given string in a language, trying to convince a weak verifier whose coins are visible to all. We show that the incorporation of just two qubits to an otherwise classical constant-space verifier raises the class of debatable languages from at most NP to the collection of all Turing-decidable languages (recursive languages). When the verifier is further constrained to make the correct decision with probability 1, the corresponding class goes up from the regular languages up to at least E.

Keywords

quantum finite automata quantum computing probabilistic finite automata Arthur-Merlin games debate systems zero-error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M., DeMarrais, J., Huang, M.D.A.: Quantum computability. SIAM Journal on Computing 26(5), 1524–1540 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ambainis, A., Watrous, J.: Two–way finite automata with quantum and classical states. Theoretical Computer Science 287(1), 299–311 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Babai, L.: Trading group theory for randomness. In: STOC 1985, pp. 421–429 (1985)Google Scholar
  4. 4.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–133 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Condon, A.: Computational Models of Games. MIT Press (1989)Google Scholar
  6. 6.
    Condon, A., Feigenbaum, J., Lund, C., Shor, P.: Probabilistically checkable debate systems and approximation algorithms for PSPACE-hard functions (extended abstract). In: STOC 1993, pp. 305–314. ACM (1993)Google Scholar
  7. 7.
    Condon, A., Ladner, R.E.: Probabilistic game automata. Journal of Computer and System Sciences 36(3), 452–489 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs (extended abstract). In: FOCS 1989, pp. 462–467 (1989)Google Scholar
  9. 9.
    Demirci, H.G., Say, A.C.C., Yakaryılmaz, A.: The complexity of debate checking. Theory of Computing Systems (2014), doi:10.1007/s00224-014-9547-7Google Scholar
  10. 10.
    Dwork, C., Stockmeyer, L.: Finite state verifiers I: The power of interaction. Journal of the ACM 39(4), 800–828 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Feige, U., Kilian, J.: Making games short (extended abstract). In: STOC 1997, pp. 506–516. ACM (1997)Google Scholar
  12. 12.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gutoski, G., Watrous, J.: Toward a general theory of quantum games. In: STOC 2007, pp. 565–574 (2007)Google Scholar
  14. 14.
    Kitaev, A.Y., Shen, A., Vyalyi, M.N.: Classical and Quantum Computation. American Mathematical Society (2002)Google Scholar
  15. 15.
    Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown automata. In: FOCS 1978, pp. 92–106 (1978)Google Scholar
  16. 16.
    Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–243 (1963)CrossRefzbMATHGoogle Scholar
  17. 17.
    Yakaryılmaz, A.: Public-qubits versus private-coins. Tech. rep. (2012), ECCC:TR12-130Google Scholar
  18. 18.
    Yakaryılmaz, A.: Quantum alternation. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 334–346. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum finite automata. Discrete Mathematics and Theoretical Computer Science 12(2), 19–40 (2010)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Information and Computation 279(6), 873–892 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Abuzer Yakaryılmaz
    • 1
    • 2
  • A. C. Cem Say
    • 3
  • H. Gökalp Demirci
    • 4
  1. 1.Faculty of ComputingUniversity of LatviaRīgaLatvia
  2. 2.National Laboratory for Scientific ComputingPetrópolisBrazil
  3. 3.Department of Computer EngineeringBoğaziçi UniversityİstanbulTurkey
  4. 4.Department of Computer ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations