Advertisement

From Gobble to Zen: The Quest for Truly Intelligent Software and the Monte Carlo Revolution in Go

  • Ralf FunkeEmail author
Chapter
  • 2.5k Downloads
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 9)

Abstract

After the success of chess programming, culminating in Deep Blue, many game programers and advocates of Artificial Intelligence thought that the Asian game of Go would provide a new fruitful field for research. It seemed that the game was too complex to be mastered with anything but new methods mimicking human intelligence. In the end, though, a breakthrough came from applying statistical methods.

Keywords

Go game Monte Carlo UCT chess artificial intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poe, E.A.: Maelzel’s Chess-Player. Dodo Press (2009)Google Scholar
  2. 2.
    Jaynes, J.: The problem of animate motion in the seventeenth century. In: Kuijsten, M. (ed.) The Julian Jaynes Collection, pp. 69–84. Julian Jaynes Society (2012)Google Scholar
  3. 3.
    Myers, R.T., Chatterjee, S.: Science, culture, and the game of Go (2012), http://www.bob.myers.name/pub/go-overview.doc
  4. 4.
    Müller, M.: Computer Go. Artificial Intelligence 134(12), 145–179 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bouzy, B., Cazenave, T.: Computer Go: An AI oriented survey. Artificial Intelligence 132(1), 39–103 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bouzy, B.: Spatial reasoning in the game of Go. In: Workshop on Representations and Processes in Vision and Natural Language, ECAI, pp. 78–80 (1996)Google Scholar
  7. 7.
    Brügmann, B.: Monte Carlo Go. Technical report, Physics Department, Syracuse University (1993)Google Scholar
  8. 8.
    Bouzy, B., Helmstetter, B.: Monte-Carlo Go developments. In: van den Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games 10: Many Games, Many Challenges. IFIP, vol. 135, pp. 159–174. Springer, Boston (2003)Google Scholar
  9. 9.
    Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Gelly, S., Silver, D.: Achieving master level play in 9 x 9 computer Go. In: AAAI 2008, pp. 1537–1540 (2008)Google Scholar
  11. 11.
    Bouzy, B.: Backward history of Indigo (2012), http://www.math-info.univ-paris5.fr/~bouzy/IndigoHistory.html
  12. 12.
    Scarff, A.: AANNS explained (2012), http://www.britgo.org/files/scarff/AANNS_Explained.pdf

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.SNAP InnovationHamburgGermany

Personalised recommendations