Skip to main content

Cylindrical Oblique Fin Minichannel Structure

  • Chapter
  • First Online:
  • 770 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

A novel cylindrical oblique fin minichannel heat sink, in the form of an enveloping jacket, is proposed to be fitted over cylindrical heat sources. This chapter provides a description on the numerical simulation and experimental investigation for both conventional and cylindrical oblique fin minichannel, a similarity analysis and parametric study for oblique fin minichannel heat sink and an edge effect investigation. The objectives include: (1) validate the applicability of conventional theories and simulation results in predicting heat transfer performance for cylindrical oblique fin minichannel, (2) explore the flow mechanism and optimize the structure of cylindrical oblique fin heat sink for its best overall heat transfer performance and (3) understand how the edge effect influences the flow and temperature uniformity due to the generation of secondary flows in the minichannels. In this chapter, minichannel geometry consideration, simulation model set-up, test section design, experimental set-up and data analysis are presented; various flow distributions are investigated and reported, as the secondary channel gap, oblique angle and Reynolds number are varied; multiple correlations for the average Nusselt number and the apparent friction constant are obtained and discussed; the edge effect for oblique finned structure is examined. Lastly, key conclusions are discussed and presented for this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fan Y, Lee PS, Jin L-W, Chua BW (2013) A simulation and experimental study of fluid flow and heat transfer on cylindrical oblique-finned heat sink. Int J Heat Mass Transfer 61:62–72. doi:10.1016/j.ijheatmasstransfer.2013.01.075

    Article  Google Scholar 

  2. Lee YJ, Lee PS, Chou SK (2010) Enhanced microchannel heat sinks using oblique fins, ASME 2009 InterPACK Conference, 19–23 July, vol 2. San Francisco, CA, USA, pp 253–260. doi:10.1115/InterPACK2009-89059.

  3. Suga K, Aoki H (1995) Numerical study on heat transfer and pressure drop in multilouvered fins. J Enhanc Heat Transfer 2:231–238

    Article  Google Scholar 

  4. DeJong NC, Jacobi AM (2003) Flow, heat transfer, and pressure drop in the near-wall region of louvered-fin arrays. Exp Therm Fluid Sci 27:237–250

    Article  Google Scholar 

  5. Satish G, Kandlikar SG, Garimella S, Li D, Colin S, King MR (2005) Heat transfer and fluid flow in minichannels and microchannels, 1st edn. Elsevier, Oxford, UK

    Google Scholar 

  6. Shah RK (1978) Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic, New York, NY

    Google Scholar 

  7. Alharbi AY, Pence DV, Cullion RN (2003) Fluid flow through microscale fractal-like branching channel networks. J Fluid Eng Trans ASME 125:1051–1057

    Article  Google Scholar 

  8. Fan Y, Lee PS, Jin L-W, Chua BW (2014) Experimental investigation on heat transfer and pressure drop of a novel cylindrical oblique fin heat sink. Int J Therm Sci 76:1–10. doi:10.1016/j.ijthermalsci.2013.08.007, http://dx.doi.org

    Article  Google Scholar 

  9. Kandlikar SG, Li D, Colin S, King MR (2005) Heat transfer and fluid flow in minichannels and microchannels. Elsevier, Oxford

    Google Scholar 

  10. Rosaguti NR, Fletcher DF, Haynes BS (2006) Laminar flow and heat transfer in a periodic serpentine channel with semi-circular cross-section. Int J Heat Mass Transfer 49:2912–2923

    Article  MATH  Google Scholar 

  11. Bennett D (2013) Why are the batteries in Boeing’s 787 burning? Internet article-http://www.businessweek.com/articles/2013-01-18/why-the-batteries-in-boeings-787-are-burning

  12. Fan Y, Lee PS, Chua BW (2014) Investigation on the influence of edge effect on flow and temperature uniformities in cylindrical oblique-finned minichannel array. Int J Heat Mass Transfer 70:651–663. doi:10.1016/j.ijheatmasstransfer.2013.11.072, http://dx.doi.org

    Article  Google Scholar 

  13. Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525–1532. doi:10.2514/3.8284

    Article  MATH  Google Scholar 

  14. Sparrow EM, Abraham JP, Minkowycz WJ (2009) Flow separation in a diverging conical duct: effect of Reynolds number and divergence angle. Int J Heat Mass Transfer 52:3079–3083

    Article  MATH  Google Scholar 

  15. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605

    Article  Google Scholar 

  16. Lee GG, Allan WDE, Goni Boulama K (2013) Flow and performance characteristics of an Allison 250 gas turbine S-shaped diffuser: effects of geometry variations. Int J Heat Fluid Flow 42:151–163

    Article  Google Scholar 

  17. Bardina JE (1997) Turbulence modeling validation, testing, and development [microform]/J.E. Bardina, P.G. Huang, T.J. Coakley National Aeronautics and Space Administration, Ames Research Center; National Technical Information Service, distributor, Moffett Field, CA; Springfield, VA

    Google Scholar 

  18. Lee YJ, Lee PS, Chou SK (2013) Numerical study of fluid flow and heat transfer in the enhanced microchannel with oblique fins. J Heat Transfer 135(4):041901

    Google Scholar 

  19. Fan Y, Lee PS, Jin L-W, Chua BW, Zhang D-C (2014) A parametric investigation of heat transfer and friction characteristics in cylindrical oblique fin minichannel heat sink. Int J Heat Mass Transfer 68:567–584. doi:10.1016/j.ijheatmasstransfer.2013.09.027, http://dx.doi.org

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Fan, Y., Lee, P.S., Singh, P.K., Lee, Y.J. (2015). Cylindrical Oblique Fin Minichannel Structure. In: Thermal Transport in Oblique Finned Micro/Minichannels. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-09647-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09647-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09646-9

  • Online ISBN: 978-3-319-09647-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics