How Many Ants Does It Take to Find the Food?

  • Yuval Emek
  • Tobias Langner
  • David Stolz
  • Jara Uitto
  • Roger Wattenhofer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8576)


Consider the Ants Nearby Treasure Search (ANTS) problem, where n mobile agents, initially placed at the origin of an infinite grid, collaboratively search for an adversarially hidden treasure. The agents are controlled by deterministic/randomized finite or pushdown automata and are able to communicate with each other through constant-size messages. We show that the minimum number of agents required to solve the ANTS problem crucially depends on the computational capabilities of the agents as well as the timing parameters of the execution environment. We give lower and upper bounds for different scenarios.


Mobile Agent Turing Machine Quarter Plane Pushdown Automaton Deterministic Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS Problem with Asynchronous Finite State Machines. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 471–482. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the Plane Without Communication. In: Proceedings of the 31st ACM Symposium on Principles of Distributed Computing (PODC), pp. 77–86 (2012)Google Scholar
  3. 3.
    Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized Collaborative Search and Implications for Biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 61–75. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph Exploration by a Finite Automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between Selection Complexity and Performance when Searching the Plane without Communication. In: Proceedings of the 33rd Symposium on Principles of Distributed Computing, PODC (to appear, 2014)Google Scholar
  6. 6.
    Albers, S., Henzinger, M.: Exploring Unknown Environments. SIAM Journal on Computing 29, 1164–1188 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Deng, X., Papadimitriou, C.: Exploring an Unknown Graph. Journal of Graph Theory 32, 265–297 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree Exploration with Little Memory. Journal of Algorithms 51, 38–63 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Panaite, P., Pelc, A.: Exploring Unknown Undirected Graphs. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 316–322 (1998)Google Scholar
  10. 10.
    Reingold, O.: Undirected Connectivity in Log-Space. Journal of the ACM (JACM) 55, 17:1–17:24 (2008)Google Scholar
  11. 11.
    Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (SFCS), pp. 218–223 (1979)Google Scholar
  12. 12.
    Aigner, M., Fromme, M.: A Game of Cops and Robbers. Discrete Applied Mathematics 8, 1–12 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. Information and Computation 106, 234–252 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    López-Ortiz, A., Sweet, G.: Parallel Searching on a Lattice. In: Proceedings of the 13th Canadian Conference on Computational Geometry (CCCG), pp. 125–128 (2001)Google Scholar
  15. 15.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in Networks of Passively Mobile Finite-State Sensors. Distributed Computing, 235–253 (2006)Google Scholar
  16. 16.
    Aspnes, J., Ruppert, E.: An Introduction to Population Protocols. In: Garbinato, B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile Applications, pp. 97–120. Springer (2009)Google Scholar
  17. 17.
    Emek, Y., Wattenhofer, R.: Stone Age Distributed Computing. In: Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing (PODC) (2013)Google Scholar
  18. 18.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yuval Emek
    • 1
  • Tobias Langner
    • 2
  • David Stolz
    • 2
  • Jara Uitto
    • 2
  • Roger Wattenhofer
    • 2
  1. 1.TechnionIsrael
  2. 2.ETH ZürichSwitzerland

Personalised recommendations