Skip to main content

Application of Mass Spectrometry-Based Metabolomics in Identification of Early Noninvasive Biomarkers of Alcohol-Induced Liver Disease Using Mouse Model

  • Conference paper
  • First Online:
Biological Basis of Alcohol-Induced Cancer

Abstract

A rapid, non-invasive urine test for early stage alcohol-induced liver disease (ALD) would permit risk stratification and treatment of high-risk individuals before ALD leads to irreversible liver damage and death. Urinary metabolomic studies were carried out to identify ALD-associated metabolic biomarkers using Ppara-null mouse model that is susceptible to ALD development on chronic alcohol consumption. Two successive studies were conducted to evaluate the applicability of mass spectrometry-based metabolomics in identification of ALD-specific signatures and to examine the robustness of these biomarkers against genetic background. Principal components analysis of ultraperformance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-generated urinary metabolic fingerprints showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals. It also showed that a combined endogenous biomarker panel helps to identify subjects with ALD as well as those at risk of developing ALD even without any information on alcohol intake or genetics. Quantitative analysis showed that increased excretion of indole-3-lactic acid and phenyllactic acid was a genetic background-independent signature exclusively associated with ALD pathogenesis in Ppara-null mice that showed liver pathologies similar to those observed in early stages of human ALD. These findings demonstrated that mass spectrometry-based metabolomic analysis could help in the identification of ALD-specific signatures, and that metabolites such as indole-3-lactic acid and phenyllactic acid, may serve as robust noninvasive biomarkers for early stages of ALD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALD:

Alcohol-induced liver disease

ALT:

Alanine aminotransferase

ANOVA:

Analysis of variance

AST:

Aspartate aminotransferase

ESI+:

Electrospray ionization in positive mode

ESI−:

Electrospray ionization in negative mode

MRM:

Multiple reaction monitoring

NAD+ :

Oxidized nicotinamide adenine dinucleotide

NADH:

Reduced nicotinamide adenine dinucleotide

OPLS:

Orthogonal projection to latent structures

PCA:

Principal components analysis

Ppara-null:

Peroxisome proliferator-activated receptor alpha knockout mouse model

PPARα:

Peroxisome proliferator-activated receptor alpha

UPLC-ESI-QTOF-MS:

Ultraperformance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry

References

  1. Hoyert DL, Heron MP, Murphy SL, Kung HC (2006) Deaths: final data for 2003. Natl Vital Stat Rep 54(13):1–120

    PubMed  Google Scholar 

  2. Mandayam S, Jamal MM, Morgan TR (2004) Epidemiology of alcoholic liver disease. Semin Liver Dis 24(3):217–232

    Article  PubMed  Google Scholar 

  3. WHO (2011) Global status report on alcohol and health. World Health Organization, Geneva

    Google Scholar 

  4. Shibuya A, Yoshida A (1988) Genotypes of alcohol-metabolizing enzymes in Japanese with alcohol liver diseases: a strong association of the usual Caucasian-type aldehyde dehydrogenase gene (ALDH1(2)) with the disease. Am J Hum Genet 43(5):744–748

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Pirmohamed M, Kitteringham NR, Quest LJ et al (1995) Genetic polymorphism of cytochrome P4502E1 and risk of alcoholic liver disease in Caucasians. Pharmacogenetics 5(6):351–357

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka F, Shiratori Y, Yokosuka O, Imazeki F, Tsukada Y, Omata M (1996) High incidence of ADH2*1/ALDH2*1 genes among Japanese alcohol dependents and patients with alcoholic liver disease. Hepatology 23(2):234–239

    Article  CAS  PubMed  Google Scholar 

  7. Zintzaras E, Stefanidis I, Santos M, Vidal F (2006) Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease? Hepatology 43(2):352–361

    Article  CAS  PubMed  Google Scholar 

  8. Sherva R, Rice JP, Neuman RJ, Rochberg N, Saccone NL, Bierut LJ (2009) Associations and interactions between SNPs in the alcohol metabolizing genes and alcoholism phenotypes in European Americans. Alcohol Clin Exp Res 33(5):848–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Auguet T, Vidal F, Broch M et al (2010) Polymorphisms in the interleukin-10 gene promoter and the risk of alcoholism and alcoholic liver disease in Caucasian Spaniard men. Alcohol 44(3):211–216

    Article  CAS  PubMed  Google Scholar 

  10. Linneberg A, Gonzalez-Quintela A, Vidal C et al (2010) Genetic determinants of both ethanol and acetaldehyde metabolism influence alcohol hypersensitivity and drinking behaviour among Scandinavians. Clin Exp Allergy 40(1):123–130

    Article  CAS  PubMed  Google Scholar 

  11. O’Shea RS, Dasarathy S, McCullough AJ (2010) Alcoholic liver disease. Am J Gastroenterol 105(1):14–32; quiz 33

    Article  PubMed  Google Scholar 

  12. Chen AC, Manz N, Tang Y et al (2010) Single-nucleotide polymorphisms in corticotropin releasing hormone receptor 1 gene (CRHR1) are associated with quantitative trait of event-related potential and alcohol dependence. Alcohol Clin Exp Res 34(6):988–996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Grove J, Brown AS, Daly AK, Bassendine MF, James OF, Day CP (1998) The RsaI polymorphism of CYP2E1 and susceptibility to alcoholic liver disease in Caucasians: effect on age of presentation and dependence on alcohol dehydrogenase genotype. Pharmacogenetics 8(4):335–342

    Article  CAS  PubMed  Google Scholar 

  14. Wong NA, Rae F, Bathgate A, Smith CA, Harrison DJ (2000) Polymorphisms of the gene for microsomal epoxide hydrolase and susceptibility to alcoholic liver disease and hepatocellular carcinoma in a Caucasian population. Toxicol Lett 115(1):17–22

    Article  CAS  PubMed  Google Scholar 

  15. Teli MR, Day CP, Burt AD, Bennett MK, James OF (1995) Determinants of progression to cirrhosis or fibrosis in pure alcoholic fatty liver. Lancet 346(8981):987–990

    Article  CAS  PubMed  Google Scholar 

  16. MacSween RN, Burt AD (1986) Histologic spectrum of alcoholic liver disease. Semin Liver Dis 6(3):221–232

    Article  CAS  PubMed  Google Scholar 

  17. Schutte K, Bornschein J, Malfertheiner P (2009) Hepatocellular carcinoma—epidemiological trends and risk factors. Dig Dis 27(2):80–92

    Article  PubMed  Google Scholar 

  18. Sherman M (2010) Hepatocellular carcinoma: New and emerging risks. Dig Liver Dis 42(Suppl 3):S215–S222

    Article  PubMed  Google Scholar 

  19. Levitsky J, Mailliard ME (2004) Diagnosis and therapy of alcoholic liver disease. Semin Liver Dis 24(3):233–247

    Article  CAS  PubMed  Google Scholar 

  20. Menon KV, Gores GJ, Shah VH (2001) Pathogenesis, diagnosis, and treatment of alcoholic liver disease. Mayo Clin Proc 76(10):1021–1029

    Article  CAS  PubMed  Google Scholar 

  21. Crabb DW, Liangpunsakul S (2006) Alcohol and lipid metabolism. J Gastroenterol Hepatol 21(Suppl 3):S56–S60

    Article  CAS  PubMed  Google Scholar 

  22. Lee SS, Pineau T, Drago J et al (1995) Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15(6):3012–3022

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Martin PG, Guillou H, Lasserre F et al (2007) Novel aspects of PPARalpha-mediated regulation of lipid and xenobiotic metabolism revealed through a nutrigenomic study. Hepatology 45(3):767–777

    Article  CAS  PubMed  Google Scholar 

  24. Rakhshandehroo M, Sanderson LM, Matilainen M et al (2007) Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling. PPAR Res 2007:26839

    Article  PubMed Central  PubMed  Google Scholar 

  25. Sozio M, Crabb DW (2008) Alcohol and lipid metabolism. Am J Physiol Endocrinol Metab 295(1):E10–E16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nakajima T, Kamijo Y, Tanaka N et al (2004) Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. Hepatology 40(4):972–980

    Article  CAS  PubMed  Google Scholar 

  27. Mancinelli R, Ceccanti M (2009) Biomarkers in alcohol misuse: their role in the prevention and detection of thiamine deficiency. Alcohol Alcohol 44(2):177–182

    Article  CAS  PubMed  Google Scholar 

  28. Sharpe PC (2001) Biochemical detection and monitoring of alcohol abuse and abstinence. Ann Clin Biochem 38(Pt 6):652–664

    Article  CAS  PubMed  Google Scholar 

  29. Saadeh S (2007) Nonalcoholic Fatty liver disease and obesity. Nutr Clin Pract 22(1):1–10

    Article  PubMed  Google Scholar 

  30. Calvaruso V, Craxi A (2009) Implication of normal liver enzymes in liver disease. J Viral Hepat 16(8):529–536

    Article  PubMed  Google Scholar 

  31. Cadranel JF, Rufat P, Degos F (2000) Practices of liver biopsy in France: results of a prospective nationwide survey. For the Group of Epidemiology of the French Association for the Study of the Liver (AFEF). Hepatology 32(3):477–481

    Article  CAS  PubMed  Google Scholar 

  32. Tyburski JB, Patterson AD, Krausz KW et al (2008) Radiation metabolomics. 1. Identification of minimally invasive urine biomarkers for gamma-radiation exposure in mice. Radiat Res 170(1):1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Patterson AD, Lanz C, Gonzalez FJ, Idle JR (2009) The role of mass spectrometry-based metabolomics in medical countermeasures against radiation. Mass Spectrom Rev 29(3):503–521

    Google Scholar 

  34. Sreekumar A, Poisson LM, Rajendiran TM et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231):910–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. MacIntyre DA, Jimenez B, Lewintre EJ et al (2010) Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups. Leukemia 24(4):788–797

    Article  CAS  PubMed  Google Scholar 

  36. Loftus N, Barnes A, Ashton S et al (2011) Metabonomic investigation of liver profiles of nonpolar metabolites obtained from alcohol-dosed rats and mice using high mass accuracy MSn analysis. J Proteome Res 10(2):705–713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bradford BU, O’Connell TM, Han J et al (2008) Metabolomic profiling of a modified alcohol liquid diet model for liver injury in the mouse uncovers new markers of disease. Toxicol Appl Pharmacol 232(2):236–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Fernando H, Kondraganti S, Bhopale KK et al (2010) (1)H and (3)(1)P NMR lipidome of ethanol-induced fatty liver. Alcohol Clin Exp Res 34(11):1937–1947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2(6):559–572

    Article  Google Scholar 

  40. Suhre K, Schmitt-Kopplin P (2008) MassTRIX: mass translator into pathways. Nucleic Acids Res 36(Web Server Issue):W481–W484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Jansson J, Willing B, Lucio M et al (2009) Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One 4(7):e6386

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kind T, Fiehn O (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105

    Article  PubMed Central  PubMed  Google Scholar 

  43. Cui Q, Lewis IA, Hegeman AD et al (2008) Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol 26(2):162–164

    Article  CAS  PubMed  Google Scholar 

  44. Smith CA, O’Maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27(6):747–751

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen PV, Abel T, Kandel ER, Bourtchouladze R (2000) Strain-dependent differences in LTP and hippocampus-dependent memory in inbred mice. Learn Mem 7(3):170–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Syn WK, Yang L, Chiang DJ et al (2009) Genetic differences in oxidative stress and inflammatory responses to diet-induced obesity do not alter liver fibrosis in mice. Liver Int 29(8):1262–1272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Liu J, Corton C, Dix DJ, Liu Y, Waalkes MP, Klaassen CD (2001) Genetic background but not metallothionein phenotype dictates sensitivity to cadmium-induced testicular injury in mice. Toxicol Appl Pharmacol 176(1):1–9

    Article  CAS  PubMed  Google Scholar 

  48. Manna SK, Patterson AD, Yang Q et al (2010) Identification of noninvasive biomarkers for alcohol-induced liver disease using urinary metabolomics and the Ppara-null mouse. J Proteome Res 9(8):4176–4188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Manna SK, Patterson AD, Yang Q et al (2011) UPLC–MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. J Proteome Res 10(9):4120–4133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Helander A, Bottcher M, Fehr C, Dahmen N, Beck O (2009) Detection times for urinary ethyl glucuronide and ethyl sulfate in heavy drinkers during alcohol detoxification. Alcohol Alcohol 44(1):55–61

    Article  CAS  PubMed  Google Scholar 

  51. Hoiseth G, Bernard JP, Stephanson N et al (2008) Comparison between the urinary alcohol markers EtG, EtS, and GTOL/5-HIAA in a controlled drinking experiment. Alcohol Alcohol 43(2):187–191

    Article  CAS  PubMed  Google Scholar 

  52. Shin M, Kim I, Inoue Y, Kimura S, Gonzalez FJ (2006) Regulation of mouse hepatic alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase, a key enzyme in the tryptophan-nicotinamide adenine dinucleotide pathway, by hepatocyte nuclear factor 4alpha and peroxisome proliferator-activated receptor alpha. Mol Pharmacol 70(4):1281–1290

    Article  CAS  PubMed  Google Scholar 

  53. Lumeng L, Crabb DW (2001) Alcoholic liver disease. Curr Opin Gastroenterol 17(3):211–220

    Article  CAS  PubMed  Google Scholar 

  54. Kalant H, Khanna JM, Loth J (1970) Effect of chronic intake of ethanol on pyridine nucleotide levels in rat liver and kidney. Can J Physiol Pharmacol 48(8):542–549

    Article  CAS  PubMed  Google Scholar 

  55. Recasens M, Benezra R, Basset P, Mandel P (1980) Cysteine sulfinate aminotransferase and aspartate aminotransferase isoenzymes of rat brain. Purification, characterization, and further evidence for identity. Biochemistry 19(20):4583–4589

    Article  CAS  PubMed  Google Scholar 

  56. Yagi T, Kagamiyama H, Motosugi K, Nozaki M, Soda K (1979) Crystallization and properties of aspartate aminotransferase from Escherichia coli B. FEBS Lett 100(1):81–84

    Article  CAS  PubMed  Google Scholar 

  57. Jean M, DeMoss RD (1968) Indolelactate dehydrogenase from Clostridium sporogenes. Can J Microbiol 14(4):429–435

    Article  CAS  PubMed  Google Scholar 

  58. Leelayoova S, Marbury D, Rainey PM, Mackenzie NE, Hall JE (1992) In vitro tryptophan catabolism by Leishmania donovani donovani promastigotes. J Protozool 39(2):350–358

    Article  CAS  PubMed  Google Scholar 

  59. Owen TG, Hochachka PW (1974) Purification and properties of dolphin muscle aspartate and alanine transaminases and their possible roles in the energy metabolism of diving mammals. Biochem J 143(3):541–553

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Bode R, Lippoldt A, Birnbaum D (1986) Purification and properties of D-aromatic lactate dehydrogenase, an enzyme involved in the catabolism of the aromatic amino acids of Candida maltosa. Biochem Physiol Pflanz 181:189–198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute Intramural Research Program, the National Institute of Environmental Health Sciences grant (U01ES016013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Manna, S.K., Thompson, M.D., Gonzalez, F.J. (2015). Application of Mass Spectrometry-Based Metabolomics in Identification of Early Noninvasive Biomarkers of Alcohol-Induced Liver Disease Using Mouse Model. In: Vasiliou, V., Zakhari, S., Seitz, H., Hoek, J. (eds) Biological Basis of Alcohol-Induced Cancer. Advances in Experimental Medicine and Biology, vol 815. Springer, Cham. https://doi.org/10.1007/978-3-319-09614-8_13

Download citation

Publish with us

Policies and ethics