Advertisement

Alcohol and HCV: Implications for Liver Cancer

  • Gyongyi Szabo
  • Banishree Saha
  • Terence N. Bukong
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 815)

Abstract

Liver cancers are one of the deadliest known malignancies which are increasingly becoming a major public health problem in both developed and developing countries. Overwhelming evidence suggests a strong role of infection with hepatitis B and C virus (HBV and HCV), alcohol abuse, as well as metabolic diseases such as obesity and diabetes either individually or synergistically to cause or exacerbate the development of liver cancers. Although numerous etiologic mechanisms for liver cancer development have been advanced and well characterized, the lack of definite curative treatments means that gaps in knowledge still exist in identifying key molecular mechanisms and pathways in the pathophysiology of liver cancers. Given the limited success with current therapies and preventive strategies against liver cancer, there is an urgent need to identify new therapeutic options for patients. Targeting HCV and or alcohol-induced signal transduction, or virus–host protein interactions may offer novel therapies for liver cancer. This review summarizes current knowledge on the mechanistic development of liver cancer associated with HCV infection and alcohol abuse as well as highlights potential novel therapeutic strategies.

Keywords

Hepatitis C virus Alcohol Cancer Therapy Inflammation Molecular signaling Immunity Liver 

Notes

Conflict of Interest

The authors declare there are no conflicts of interest.

Grant Acknowledgment  5R37AA014372-10

References

  1. 1.
    Davis GL, Dempster J, Meler JD, Orr DW, Walberg MW, Brown B, Berger BD, O’connor JK, Goldstein RM (2008) Hepatocellular carcinoma: management of an increasingly common problem. Proc (Bayl Univ Med Cent) 21:266–280Google Scholar
  2. 2.
    Morgan TR, Mandayam S, Jamal MM (2004) Alcohol and hepatocellular carcinoma. Gastroenterology 127:S87–S96PubMedGoogle Scholar
  3. 3.
    Sanyal AJ, Yoon SK, Lencioni R (2010) The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist 15(Suppl 4):14–22PubMedGoogle Scholar
  4. 4.
    Tornesello ML, Buonaguro L, Tatangelo F, Botti G, Izzo F, Buonaguro FM (2013) Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics 102:74–83PubMedGoogle Scholar
  5. 5.
    Levrero M (2006) Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene 25:3834–3847PubMedGoogle Scholar
  6. 6.
    Bartenschlager R, Penin F, Lohmann V, Andre P (2011) Assembly of infectious hepatitis C virus particles. Trends Microbiol 19:95–103PubMedGoogle Scholar
  7. 7.
    O’Shea RS, Dasarathy S, McCullough AJ, Practice Guideline Committee of the American Association for the Study of Liver Diseases, Practice Parameters Committee of the American College of Gastroenterology (2010) Alcoholic liver disease. Hepatology 51:307–328PubMedGoogle Scholar
  8. 8.
    Frazier TH, Stocker AM, Kershner NA, Marsano LS, McClain CJ (2011) Treatment of alcoholic liver disease. Therap Adv Gastroenterol 4:63–81PubMedCentralPubMedGoogle Scholar
  9. 9.
    Szabo G, Lippai D (2012) Molecular hepatic carcinogenesis: impact of inflammation. Dig Dis 30:243–248PubMedGoogle Scholar
  10. 10.
    Machida K (2010) TLRs, alcohol, HCV, and tumorigenesis. Gastroenterol Res Pract 2010:518674PubMedCentralPubMedGoogle Scholar
  11. 11.
    Koike K, Tsutsumi T, Miyoshi H, Shinzawa S, Shintani Y, Fujie H, Yotsuyanagi H, Moriya K (2008) Molecular basis for the synergy between alcohol and hepatitis C virus in hepatocarcinogenesis. J Gastroenterol Hepatol 23(Suppl 1):S87–S91PubMedGoogle Scholar
  12. 12.
    Rosman AS, Waraich A, Galvin K, Casiano J, Paronetto F, Lieber CS (1996) Alcoholism is associated with hepatitis C but not hepatitis B in an urban population. Am J Gastroenterol 91:498–505PubMedGoogle Scholar
  13. 13.
    Schiff ER (1999) The alcoholic patient with hepatitis C virus infection. Am J Med 107:95S–99SPubMedGoogle Scholar
  14. 14.
    Tanaka T, Yabusako T, Yamashita T, Kondo K, Nishiguchi S, Kuroki T, Monna T (2000) Contribution of hepatitis C virus to the progression of alcoholic liver disease. Alcohol Clin Exp Res 24:112S–116SPubMedGoogle Scholar
  15. 15.
    Regev A, Jeffers LJ (1999) Hepatitis C and alcohol. Alcohol Clin Exp Res 23:1543–1551PubMedGoogle Scholar
  16. 16.
    Day CP (2001) Heavy drinking greatly increases the risk of cirrhosis in patients with HCV hepatitis. Gut 49:750–751PubMedCentralPubMedGoogle Scholar
  17. 17.
    Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, Perelson AS (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282:103–107PubMedGoogle Scholar
  18. 18.
    Stickel F, Schuppan D, Hahn EG, Seitz HK (2002) Cocarcinogenic effects of alcohol in hepatocarcinogenesis. Gut 51:132–139PubMedCentralPubMedGoogle Scholar
  19. 19.
    Enomoto N, Ikejima K, Yamashina S, Hirose M, Shimizu H, Kitamura T, Takei Y, Sato And N, Thurman RG (2001) Kupffer cell sensitization by alcohol involves increased permeability to gut-derived endotoxin. Alcohol Clin Exp Res 25:51S–54SPubMedGoogle Scholar
  20. 20.
    Garcia-Tsao G, Wiest R (2004) Gut microflora in the pathogenesis of the complications of cirrhosis. Best Pract Res Clin Gastroenterol 18:353–372PubMedGoogle Scholar
  21. 21.
    Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG (2001) The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48:206–211PubMedCentralPubMedGoogle Scholar
  22. 22.
    Purohit V, Bode JC, Bode C, Brenner DA, Choudhry MA, Hamilton F, Kang YJ, Keshavarzian A, Rao R, Sartor RB, Swanson C, Turner JR (2008) Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol 42:349–361PubMedCentralPubMedGoogle Scholar
  23. 23.
    Szabo G, Bala S (2010) Alcoholic liver disease and the gut-liver axis. World J Gastroenterol 16:1321–1329PubMedCentralPubMedGoogle Scholar
  24. 24.
    Petrasek J, Mandrekar P, Szabo G (2010) Toll-like receptors in the pathogenesis of alcoholic liver disease. Gastroenterol Res Pract 2010:pii: 710381Google Scholar
  25. 25.
    Szabo G, Aloman C, Polyak SJ, Weinman SA, Wands J, Zakhari S (2006) Hepatitis C infection and alcohol use: a dangerous mix for the liver and antiviral immunity. Alcohol Clin Exp Res 30:709–719PubMedGoogle Scholar
  26. 26.
    Protzer U, Maini MK, Knolle PA (2012) Living in the liver: hepatic infections. Nat Rev Immunol 12:201–213PubMedGoogle Scholar
  27. 27.
    Horner SM, Gale M Jr (2013) Regulation of hepatic innate immunity by hepatitis C virus. Nat Med 19:879–888PubMedGoogle Scholar
  28. 28.
    Heydtmann M (2009) Macrophages in hepatitis B and hepatitis C virus infections. J Virol 83:2796–2802PubMedCentralPubMedGoogle Scholar
  29. 29.
    Liu BS, Janssen HL, Boonstra A (2012) Type I and III interferons enhance IL-10R expression on human monocytes and macrophages, resulting in IL-10-mediated suppression of TLR-induced IL-12. Eur J Immunol 42:2431–2440PubMedGoogle Scholar
  30. 30.
    Dolganiuc A, Chang S, Kodys K, Mandrekar P, Bakis G, Cormier M, Szabo G (2006) Hepatitis C virus (HCV) core protein-induced, monocyte-mediated mechanisms of reduced IFN-alpha and plasmacytoid dendritic cell loss in chronic HCV infection. J Immunol 177:6758–6768PubMedGoogle Scholar
  31. 31.
    Fan Z, Huang XL, Kalinski P, Young S, Rinaldo CR Jr (2007) Dendritic cell function during chronic hepatitis C virus and human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 14:1127–1137PubMedCentralPubMedGoogle Scholar
  32. 32.
    MacDonald AJ, Semper AE, Libri NA, Rosenberg WM (2007) Monocyte-derived dendritic cell function in chronic hepatitis C is impaired at physiological numbers of dendritic cells. Clin Exp Immunol 148:494–500PubMedCentralPubMedGoogle Scholar
  33. 33.
    Kanto T, Inoue M, Miyatake H, Sato A, Sakakibara M, Yakushijin T, Oki C, Itose I, Hiramatsu N, Takehara T, Kasahara A, Hayashi N (2004) Reduced numbers and impaired ability of myeloid and plasmacytoid dendritic cells to polarize T helper cells in chronic hepatitis C virus infection. J Infect Dis 190:1919–1926PubMedGoogle Scholar
  34. 34.
    Bala S, Tang A, Catalano D, Petrasek J, Taha O, Kodys K, Szabo G (2012) Induction of Bcl-3 by acute binge alcohol results in toll-like receptor 4/LPS tolerance. J Leukoc Biol 92:611–620PubMedCentralPubMedGoogle Scholar
  35. 35.
    Pang M, Bala S, Kodys K, Catalano D, Szabo G (2011) Inhibition of TLR8- and TLR4-induced Type I IFN induction by alcohol is different from its effects on inflammatory cytokine production in monocytes. BMC Immunol 12:55PubMedCentralPubMedGoogle Scholar
  36. 36.
    Norkina O, Dolganiuc A, Catalano D, Kodys K, Mandrekar P, Syed A, Efros M, Szabo G (2008) Acute alcohol intake induces SOCS1 and SOCS3 and inhibits cytokine-induced STAT1 and STAT3 signaling in human monocytes. Alcohol Clin Exp Res 32:1565–1573PubMedCentralPubMedGoogle Scholar
  37. 37.
    Ye L, Wang S, Wang X, Zhou Y, Li J, Persidsky Y, Ho W (2010) Alcohol impairs interferon signaling and enhances full cycle hepatitis C virus JFH-1 infection of human hepatocytes. Drug Alcohol Depend 112:107–116PubMedCentralPubMedGoogle Scholar
  38. 38.
    Stone AE, Giugliano S, Schnell G, Cheng L, Leahy KF, Golden-Mason L, Gale M Jr, Rosen HR (2013) Hepatitis C virus pathogen associated molecular pattern (PAMP) triggers production of lambda-interferons by human plasmacytoid dendritic cells. PLoS Pathog 9:e1003316PubMedCentralPubMedGoogle Scholar
  39. 39.
    Liu HM, Gale M (2010) Hepatitis C virus evasion from RIG-I-dependent hepatic innate immunity. Gastroenterol Res Pract 2010:548390PubMedCentralPubMedGoogle Scholar
  40. 40.
    Zhang S, Kodys K, Li K, Szabo G (2013) Human type 2 myeloid dendritic cells produce interferon-lambda and amplify interferon-alpha in response to hepatitis C virus infection. Gastroenterology 144(414–425):e7PubMedGoogle Scholar
  41. 41.
    Nitta S, Sakamoto N, Nakagawa M, Kakinuma S, Mishima K, Kusano-Kitazume A, Kiyohashi K, Murakawa M, Nishimura-Sakurai Y, Azuma S, Tasaka-Fujita M, Asahina Y, Yoneyama M, Fujita T, Watanabe M (2013) Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology 57:46–58PubMedGoogle Scholar
  42. 42.
    Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, Ray SC, Gale M Jr, Lemon SM (2005) Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 102:2992–2997PubMedCentralPubMedGoogle Scholar
  43. 43.
    Pawlotsky JM (2013) Treatment of chronic hepatitis C: current and future. Curr Top Microbiol Immunol 369:321–342PubMedGoogle Scholar
  44. 44.
    Shah N, Pierce T, Kowdley KV (2013) Review of direct-acting antiviral agents for the treatment of chronic hepatitis C. Expert Opin Investig Drugs 22:1107–1121PubMedGoogle Scholar
  45. 45.
    Chou R, Hartung D, Rahman B, Wasson N, Cottrell EB, Fu R (2013) Comparative effectiveness of antiviral treatment for hepatitis C virus infection in adults: a systematic review. Ann Intern Med 158:114–123PubMedGoogle Scholar
  46. 46.
    Singal AK, Anand BS (2007) Mechanisms of synergy between alcohol and hepatitis C virus. J Clin Gastroenterol 41:761–772PubMedGoogle Scholar
  47. 47.
    Siu L, Foont J, Wands JR (2009) Hepatitis C virus and alcohol. Semin Liver Dis 29:188–199PubMedCentralPubMedGoogle Scholar
  48. 48.
    Shuper PA, Neuman M, Kanteres F, Baliunas D, Joharchi N, Rehm J (2010) Causal considerations on alcohol and HIV/AIDS—a systematic review. Alcohol Alcohol 45:159–166PubMedGoogle Scholar
  49. 49.
    Molina PE, Happel KI, Zhang P, Kolls JK, Nelson S (2010) Focus on: alcohol and the immune system. Alcohol Res Health 33:97–108PubMedCentralPubMedGoogle Scholar
  50. 50.
    Jerrells TR, Pavlik JA, Devasure J, Vidlak D, Costello A, Strachota JM, Wyatt TA (2007) Association of chronic alcohol consumption and increased susceptibility to and pathogenic effects of pulmonary infection with respiratory syncytial virus in mice. Alcohol 41:357–369PubMedCentralPubMedGoogle Scholar
  51. 51.
    Le Strat Y, Grant BF, Ramoz N, Gorwood P (2010) A new definition of early age at onset in alcohol dependence. Drug Alcohol Depend 108:43–48PubMedGoogle Scholar
  52. 52.
    Plumlee CR, Lazaro CA, Fausto N, Polyak SJ (2005) Effect of ethanol on innate antiviral pathways and HCV replication in human liver cells. Virol J 2:89PubMedCentralPubMedGoogle Scholar
  53. 53.
    Imran M, Waheed Y, Manzoor S, Bilal M, Ashraf W, Ali M, Ashraf M (2012) Interaction of Hepatitis C virus proteins with pattern recognition receptors. Virol J 9:126PubMedCentralPubMedGoogle Scholar
  54. 54.
    Chung H, Watanabe T, Kudo M, Chiba T (2010) Hepatitis C virus core protein induces homotolerance and cross-tolerance to Toll-like receptor ligands by activation of Toll-like receptor 2. J Infect Dis 202:853–861PubMedGoogle Scholar
  55. 55.
    Chang S, Dolganiuc A, Szabo G (2007) Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J Leukoc Biol 82:479–487PubMedGoogle Scholar
  56. 56.
    Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, Kurt-Jones E, Szabo G (2004) Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology 127:1513–1524PubMedGoogle Scholar
  57. 57.
    Shrivastava S, Mukherjee A, Ray R, Ray RB (2013) Hepatitis C virus induces interleukin-1beta (IL-1beta)/IL-18 in circulatory and resident liver macrophages. J Virol 87:12284–12290PubMedCentralPubMedGoogle Scholar
  58. 58.
    Negash AA, Ramos HJ, Crochet N, Lau DT, Doehle B, Papic N, Delker DA, Jo J, Bertoletti A, Hagedorn CH, Gale M Jr (2013) IL-1beta production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog 9:e1003330PubMedCentralPubMedGoogle Scholar
  59. 59.
    Hosomura N, Kono H, Tsuchiya M, Ishii K, Ogiku M, Matsuda M, Fujii H (2011) HCV-related proteins activate Kupffer cells isolated from human liver tissues. Dig Dis Sci 56:1057–1064PubMedGoogle Scholar
  60. 60.
    Dolganiuc A, Norkina O, Kodys K, Catalano D, Bakis G, Marshall C, Mandrekar P, Szabo G (2007) Viral and host factors induce macrophage activation and loss of toll-like receptor tolerance in chronic HCV infection. Gastroenterology 133:1627–1636PubMedCentralPubMedGoogle Scholar
  61. 61.
    Bala S, Tilahun Y, Taha O, Alao H, Kodys K, Catalano D, Szabo G (2012) Increased microRNA-155 expression in the serum and peripheral monocytes in chronic HCV infection. J Transl Med 10:151PubMedCentralPubMedGoogle Scholar
  62. 62.
    Coulouarn C, Corlu A, Glaise D, Guenon I, Thorgeirsson SS, Clement B (2012) Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res 72:2533–2542PubMedCentralPubMedGoogle Scholar
  63. 63.
    Brownell J, Polyak SJ (2013) Molecular pathways: hepatitis C virus, CXCL10, and the inflammatory road to liver cancer. Clin Cancer Res 19:1347–1352PubMedCentralPubMedGoogle Scholar
  64. 64.
    Wang HJ, Zakhari S, Jung MK (2010) Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol 16:1304–1313PubMedCentralPubMedGoogle Scholar
  65. 65.
    Szabo G (2010) The 40th anniversary of the National Institute on Alcoholism and Alcohol Abuse: the impact on liver disease. Hepatology 52:10–12PubMedGoogle Scholar
  66. 66.
    Szabo G, Mandrekar P (2010) Focus on: alcohol and the liver. Alcohol Res Health 33:87–96PubMedCentralPubMedGoogle Scholar
  67. 67.
    Inokuchi S, Tsukamoto H, Park E, Liu ZX, Brenner DA, Seki E (2011) Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice. Alcohol Clin Exp Res 35:1509–1518PubMedCentralPubMedGoogle Scholar
  68. 68.
    Schafer C, Parlesak A, Schutt C, Bode JC, Bode C (2002) Concentrations of lipopolysaccharide-binding protein, bactericidal/permeability-increasing protein, soluble CD14 and plasma lipids in relation to endotoxaemia in patients with alcoholic liver disease. Alcohol Alcohol 37:81–86PubMedGoogle Scholar
  69. 69.
    Blair GE, Cook GP (2008) Cancer and the immune system: an overview. Oncogene 27:5868PubMedGoogle Scholar
  70. 70.
    Whiteside TL (2006) Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 16:3–15PubMedGoogle Scholar
  71. 71.
    Zhang T, Guo CJ, Douglas SD, Metzger DS, O’brien CP, Li Y, Wang YJ, Wang X, Ho WZ (2005) Alcohol suppresses IL-2-induced CC chemokine production by natural killer cells. Alcohol Clin Exp Res 29:1559–1567PubMedCentralPubMedGoogle Scholar
  72. 72.
    Ben-Eliyahu S, Page GG, Yirmiya R, Taylor AN (1996) Acute alcohol intoxication suppresses natural killer cell activity and promotes tumor metastasis. Nat Med 2:457–460PubMedGoogle Scholar
  73. 73.
    Zhang H, Meadows GG (2008) Chronic alcohol consumption perturbs the balance between thymus-derived and bone marrow-derived natural killer cells in the spleen. J Leukoc Biol 83:41–47PubMedGoogle Scholar
  74. 74.
    Boyadjieva NI, Chaturvedi K, Poplawski MM, Sarkar DK (2004) Opioid antagonist naltrexone disrupts feedback interaction between mu and delta opioid receptors in splenocytes to prevent alcohol inhibition of NK cell function. J Immunol 173:42–49PubMedGoogle Scholar
  75. 75.
    Jeong WI, Park O, Gao B (2008) Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 134:248–258PubMedCentralPubMedGoogle Scholar
  76. 76.
    Jeong WI, Gao B (2008) Innate immunity and alcoholic liver fibrosis. J Gastroenterol Hepatol 23(Suppl 1):S112–S118PubMedCentralPubMedGoogle Scholar
  77. 77.
    Zhang H, Meadows GG (2009) Exogenous IL-15 in combination with IL-15R alpha rescues natural killer cells from apoptosis induced by chronic alcohol consumption. Alcohol Clin Exp Res 33:419–427PubMedCentralPubMedGoogle Scholar
  78. 78.
    Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244PubMedGoogle Scholar
  79. 79.
    Harrison RJ, Ettorre A, Little AM, Khakoo SI (2010) Association of NKG2A with treatment for chronic hepatitis C virus infection. Clin Exp Immunol 161:306–314PubMedCentralPubMedGoogle Scholar
  80. 80.
    Ahlenstiel G, Edlich B, Hogdal LJ, Rotman Y, Noureddin M, Feld JJ, Holz LE, Titerence RH, Liang TJ, Rehermann B (2011) Early changes in natural killer cell function indicate virologic response to interferon therapy for hepatitis C. Gastroenterology 141:1231–1239e1-2PubMedCentralPubMedGoogle Scholar
  81. 81.
    Amadei B, Urbani S, Cazaly A, Fisicaro P, Zerbini A, Ahmed P, Missale G, Ferrari C, Khakoo SI (2010) Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology 138:1536–1545PubMedCentralPubMedGoogle Scholar
  82. 82.
    Zhang S, Saha B, Kodys K, Szabo G (2013) IFN-gamma production by human natural killer cells in response to HCV-infected hepatoma cells is dependent on accessory cells. J Hepatol 59:442–449PubMedCentralPubMedGoogle Scholar
  83. 83.
    Dessouki O, Kamiya Y, Nagahama H, Tanaka M, Suzu S, Sasaki Y, Okada S (2010) Chronic hepatitis C viral infection reduces NK cell frequency and suppresses cytokine secretion: Reversion by anti-viral treatment. Biochem Biophys Res Commun 393:331–337PubMedGoogle Scholar
  84. 84.
    Edlich B, Ahlenstiel G, Zabaleta Azpiroz A, Stoltzfus J, Noureddin M, Serti E, Feld JJ, Liang TJ, Rotman Y, Rehermann B (2012) Early changes in interferon signaling define natural killer cell response and refractoriness to interferon-based therapy of hepatitis C patients. Hepatology 55:39–48PubMedCentralPubMedGoogle Scholar
  85. 85.
    Gonzalez VD, Falconer K, Michaelsson J, Moll M, Reichard O, Alaeus A, Sandberg JK (2008) Expansion of CD56- NK cells in chronic HCV/HIV-1 co-infection: reversion by antiviral treatment with pegylated IFNalpha and ribavirin. Clin Immunol 128:46–56PubMedGoogle Scholar
  86. 86.
    Gao B, Radaeva S, Jeong WI (2007) Activation of natural killer cells inhibits liver fibrosis: a novel strategy to treat liver fibrosis. Expert Rev Gastroenterol Hepatol 1:173–180PubMedGoogle Scholar
  87. 87.
    Gao B, Radaeva S, Park O (2009) Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol 86:513–528PubMedCentralPubMedGoogle Scholar
  88. 88.
    Arteel GE (2008) Silencing a killer among us: ethanol impairs immune surveillance of activated stellate cells by natural killer cells. Gastroenterology 134:351–353PubMedCentralPubMedGoogle Scholar
  89. 89.
    Szabo G, Dolganiuc A (2005) Subversion of plasmacytoid and myeloid dendritic cell functions in chronic HCV infection. Immunobiology 210:237–247PubMedGoogle Scholar
  90. 90.
    Szabo G, Dolganiuc A, Mandrekar P, White B (2004) Inhibition of antigen-presenting cell functions by alcohol: implications for hepatitis C virus infection. Alcohol 33:241–249PubMedGoogle Scholar
  91. 91.
    Dolganiuc A, Kodys K, Kopasz A, Marshall C, Mandrekar P, Szabo G (2003) Additive inhibition of dendritic cell allostimulatory capacity by alcohol and hepatitis C is not restored by DC maturation and involves abnormal IL-10 and IL-2 induction. Alcohol Clin Exp Res 27:1023–1031PubMedGoogle Scholar
  92. 92.
    Dolganiuc A, Kodys K, Kopasz A, Marshall C, Do T, Romics L Jr, Mandrekar P, Zapp M, Szabo G (2003) Hepatitis C virus core and nonstructural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation. J Immunol 170:5615–5624PubMedGoogle Scholar
  93. 93.
    Mandrekar P, Catalano D, Dolganiuc A, Kodys K, Szabo G (2004) Inhibition of myeloid dendritic cell accessory cell function and induction of T cell anergy by alcohol correlates with decreased IL-12 production. J Immunol 173:3398–3407PubMedGoogle Scholar
  94. 94.
    Golden-Mason L, Palmer B, Klarquist J, Mengshol JA, Castelblanco N, Rosen HR (2007) Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction. J Virol 81:9249–9258PubMedCentralPubMedGoogle Scholar
  95. 95.
    Saha B, Choudhary MC, Sarin SK (2013) Expression of inhibitory markers is increased on effector memory T cells during hepatitis C virus/HIV coinfection as compared to hepatitis C virus or HIV monoinfection. AIDS 27:2191–2200PubMedGoogle Scholar
  96. 96.
    Urbani S, Amadei B, Tola D, Pedrazzi G, Sacchelli L, Cavallo MC, Orlandini A, Missale G, Ferrari C (2008) Restoration of HCV-specific T cell functions by PD-1/PD-L1 blockade in HCV infection: effect of viremia levels and antiviral treatment. J Hepatol 48:548–558PubMedGoogle Scholar
  97. 97.
    McMahan RH, Golden-Mason L, Nishimura MI, McMahon BJ, Kemper M, Allen TM, Gretch DR, Rosen HR (2010) Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest 120:4546–4557PubMedCentralPubMedGoogle Scholar
  98. 98.
    Gondois-Rey F, Dental C, Halfon P, Baumert TF, Olive D, Hirsch I (2009) Hepatitis C virus is a weak inducer of interferon alpha in plasmacytoid dendritic cells in comparison with influenza and human herpesvirus type-1. PLoS One 4:e4319PubMedCentralPubMedGoogle Scholar
  99. 99.
    Liu BS, Groothuismink ZM, Janssen HL, Boonstra A (2011) Role for IL-10 in inducing functional impairment of monocytes upon TLR4 ligation in patients with chronic HCV infections. J Leukoc Biol 89:981–988PubMedGoogle Scholar
  100. 100.
    Wegert M, La Monica N, Tripodi M, Adler G, Dikopoulos N (2009) Impaired interferon type I signalling in the liver modulates the hepatic acute phase response in hepatitis C virus transgenic mice. J Hepatol 51:271–278PubMedGoogle Scholar
  101. 101.
    Korenaga M, Wang T, Li Y, Showalter LA, Chan T, Sun J, Weinman SA (2005) Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 280:37481–37488PubMedGoogle Scholar
  102. 102.
    Korenaga M, Okuda M, Otani K, Wang T, Li Y, Weinman SA (2005) Mitochondrial dysfunction in hepatitis C. J Clin Gastroenterol 39:S162–S166PubMedGoogle Scholar
  103. 103.
    Mas VR, Fassnacht R, Archer KJ, Maluf D (2010) Molecular mechanisms involved in the interaction effects of alcohol and hepatitis C virus in liver cirrhosis. Mol Med 16:287–297PubMedCentralPubMedGoogle Scholar
  104. 104.
    Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K (1998) The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4:1065–1067PubMedGoogle Scholar
  105. 105.
    Moriya K, Nakagawa K, Santa T, Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Miyazawa T, Ishibashi K, Horie T, Imai K, Todoroki T, Kimura S, Koike K (2001) Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 61:4365–4370PubMedGoogle Scholar
  106. 106.
    Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA (2002) Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122:366–375PubMedGoogle Scholar
  107. 107.
    Dionisio N, Garcia-Mediavilla MV, Sanchez-Campos S, Majano PL, Benedicto I, Rosado JA, Salido GM, Gonzalez-Gallego J (2009) Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. J Hepatol 50:872–882PubMedGoogle Scholar
  108. 108.
    Otani K, Korenaga M, Beard MR, Li K, Qian T, Showalter LA, Singh AK, Wang T, Weinman SA (2005) Hepatitis C virus core protein, cytochrome P450 2E1, and alcohol produce combined mitochondrial injury and cytotoxicity in hepatoma cells. Gastroenterology 128:96–107PubMedGoogle Scholar
  109. 109.
    Dolganiuc A, Bakis G, Kodys K, Mandrekar P, Szabo G (2006) Acute ethanol treatment modulates Toll-like receptor-4 association with lipid rafts. Alcohol Clin Exp Res 30:76–85PubMedGoogle Scholar
  110. 110.
    Testro AG, Gow PJ, Angus PW, Wongseelashote S, Skinner N, Markovska V, Visvanathan K (2010) Effects of antibiotics on expression and function of Toll-like receptors 2 and 4 on mononuclear cells in patients with advanced cirrhosis. J Hepatol 52:199–205PubMedGoogle Scholar
  111. 111.
    Szabo G, Velayudham A, Romics L Jr, Mandrekar P (2005) Modulation of non-alcoholic steatohepatitis by pattern recognition receptors in mice: the role of toll-like receptors 2 and 4. Alcohol Clin Exp Res 29:140S–145SPubMedGoogle Scholar
  112. 112.
    Machida K, Tsukamoto H, Mkrtchyan H, Duan L, Dynnyk A, Liu HM, Asahina K, Govindarajan S, Ray R, Ou JH, Seki E, Deshaies R, Miyake K, Lai MM (2009) Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proc Natl Acad Sci U S A 106:1548–1553PubMedCentralPubMedGoogle Scholar
  113. 113.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedGoogle Scholar
  114. 114.
    Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, Xu Y, Ma Q, Yang Z, Zhang Q, Ma L, Liu J, Xu S, Yan X, Bie P, Cui Y, Bian XW, Qian C (2012) Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology 56:1004–1014PubMedGoogle Scholar
  115. 115.
    Sun C, Sun L, Jiang K, Gao DM, Kang XN, Wang C, Zhang S, Huang S, Qin X, Li Y, Liu YK (2013) NANOG promotes liver cancer cell invasion by inducing epithelial-mesenchymal transition through NODAL/SMAD3 signaling pathway. Int J Biochem Cell Biol 45:1099–1108PubMedGoogle Scholar
  116. 116.
    Hara Y, Hino K, Okuda M, Furutani T, Hidaka I, Yamaguchi Y, Korenaga M, Li K, Weinman SA, Lemon SM, Okita K (2006) Hepatitis C virus core protein inhibits deoxycholic acid-mediated apoptosis despite generating mitochondrial reactive oxygen species. J Gastroenterol 41:257–268PubMedGoogle Scholar
  117. 117.
    Gong G, Waris G, Tanveer R, Siddiqui A (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci U S A 98:9599–9604PubMedCentralPubMedGoogle Scholar
  118. 118.
    Brault C, Levy PL, Bartosch B (2013) Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 5:954–980PubMedCentralPubMedGoogle Scholar
  119. 119.
    Hou W, Bukong TN, Kodys K, Szabo G (2013) Alcohol facilitates HCV RNA replication via up-regulation of miR-122 expression and inhibition of cyclin G1 in human hepatoma cells. Alcohol Clin Exp Res 37:599–608PubMedCentralPubMedGoogle Scholar
  120. 120.
    Seronello S, Ito C, Wakita T, Choi J (2010) Ethanol enhances hepatitis C virus replication through lipid metabolism and elevated NADH/NAD+. J Biol Chem 285:845–854PubMedCentralPubMedGoogle Scholar
  121. 121.
    Lee HS, Yoon JH, Kamimura S, Iwata K, Watanabe H, Kim CY (1997) Lack of association of cytochrome P450 2E1 genetic polymorphisms with the risk of human hepatocellular carcinoma. Int J Cancer 71:737–740PubMedGoogle Scholar
  122. 122.
    Hirose Y, Naito Z, Kato S, Onda M, Sugisaki Y (2002) Immunohistochemical study of CYP2E1 in hepatocellular carcinoma carcinogenesis: examination with newly prepared anti-human CYP2E1 antibody. J Nippon Med Sch 69:243–251PubMedGoogle Scholar
  123. 123.
    Liu C, Wang H, Pan C, Shen J, Liang Y (2012) CYP2E1 PstI/RsaI polymorphism and interaction with alcohol consumption in hepatocellular carcinoma susceptibility: evidence from 1,661 cases and 2,317 controls. Tumour Biol 33:979–984PubMedGoogle Scholar
  124. 124.
    Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Discov Today 13:38–43PubMedGoogle Scholar
  125. 125.
    Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549PubMedGoogle Scholar
  126. 126.
    Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265:12111–12114PubMedGoogle Scholar
  127. 127.
    Zhao R, Houry WA (2005) Hsp90: a chaperone for protein folding and gene regulation. Biochem Cell Biol 83:703–710PubMedGoogle Scholar
  128. 128.
    Bohonowych JE, Gopal U, Isaacs JS (2010) Hsp90 as a gatekeeper of tumor angiogenesis: clinical promise and potential pitfalls. J Oncol 2010:412985PubMedCentralPubMedGoogle Scholar
  129. 129.
    Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296:2232–2235PubMedGoogle Scholar
  130. 130.
    Tariq M, Nussbaumer U, Chen Y, Beisel C, Paro R (2009) Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc Natl Acad Sci U S A 106:1157–1162PubMedCentralPubMedGoogle Scholar
  131. 131.
    Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3:1021–1030PubMedGoogle Scholar
  132. 132.
    Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, Lain B, Torella C, Henning SW, Beste G, Scroggins BT, Neckers L, Ilag LL, Jay DG (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6:507–514PubMedGoogle Scholar
  133. 133.
    Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118:3030–3044PubMedGoogle Scholar
  134. 134.
    De Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615PubMedGoogle Scholar
  135. 135.
    McGivern DR, Lemon SM (2011) Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 30:1969–1983PubMedCentralPubMedGoogle Scholar
  136. 136.
    Mandrekar P, Catalano D, Jeliazkova V, Kodys K (2008) Alcohol exposure regulates heat shock transcription factor binding and heat shock proteins 70 and 90 in monocytes and macrophages: implication for TNF-alpha regulation. J Leukoc Biol 84:1335–1345PubMedCentralPubMedGoogle Scholar
  137. 137.
    Bukong TN, Hou W, Kodys K, Szabo G (2013) Ethanol facilitates hepatitis C virus replication via up-regulation of GW182 and heat shock protein 90 in human hepatoma cells. Hepatology 57:70–80PubMedCentralPubMedGoogle Scholar
  138. 138.
    Ambade A, Catalano D, Lim A, Mandrekar P (2012) Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology 55:1585–1595PubMedCentralPubMedGoogle Scholar
  139. 139.
    Sun Y, Zang Z, Xu X, Zhang Z, Zhong L, Zan W, Zhao Y, Sun L (2010) Differential proteomics identification of HSP90 as potential serum biomarker in hepatocellular carcinoma by two-dimensional electrophoresis and mass spectrometry. Int J Mol Sci 11:1423–1433PubMedCentralPubMedGoogle Scholar
  140. 140.
    Breinig M, Caldas-Lopes E, Goeppert B, Malz M, Rieker R, Bergmann F, Schirmacher P, Mayer M, Chiosis G, Kern MA (2009) Targeting heat shock protein 90 with non-quinone inhibitors: a novel chemotherapeutic approach in human hepatocellular carcinoma. Hepatology 50:102–112PubMedGoogle Scholar
  141. 141.
    Pascale RM, Simile MM, Calvisi DF, Frau M, Muroni MR, Seddaiu MA, Daino L, Muntoni MD, De Miglio MR, Thorgeirsson SS, Feo F (2005) Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer. Hepatology 42:1310–1319PubMedGoogle Scholar
  142. 142.
    Taguwa S, Kambara H, Omori H, Tani H, Abe T, Mori Y, Suzuki T, Yoshimori T, Moriishi K, Matsuura Y (2009) Cochaperone activity of human butyrate-induced transcript 1 facilitates hepatitis C virus replication through an Hsp90-dependent pathway. J Virol 83:10427–10436PubMedCentralPubMedGoogle Scholar
  143. 143.
    Nakagawa S, Umehara T, Matsuda C, Kuge S, Sudoh M, Kohara M (2007) Hsp90 inhibitors suppress HCV replication in replicon cells and humanized liver mice. Biochem Biophys Res Commun 353:882–888PubMedGoogle Scholar
  144. 144.
    Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, Suzuki T, Moriishi K, Matsuura Y (2006) Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 25:5015–5025PubMedCentralPubMedGoogle Scholar
  145. 145.
    Ujino S, Nishitsuji H, Sugiyama R, Suzuki H, Hishiki T, Sugiyama K, Shimotohno K, Takaku H (2012) The interaction between human initiation factor eIF3 subunit c and heat-shock protein 90: a necessary factor for translation mediated by the hepatitis C virus internal ribosome entry site. Virus Res 163:390–395PubMedGoogle Scholar
  146. 146.
    Ujino S, Yamaguchi S, Shimotohno K, Takaku H (2009) Heat-shock protein 90 is essential for stabilization of the hepatitis C virus nonstructural protein NS3. J Biol Chem 284:6841–6846PubMedCentralPubMedGoogle Scholar
  147. 147.
    Varmus HE (1984) The molecular genetics of cellular oncogenes. Annu Rev Genet 18:553–612PubMedGoogle Scholar
  148. 148.
    Okamoto T, Omori H, Kaname Y, Abe T, Nishimura Y, Suzuki T, Miyamura T, Yoshimori T, Moriishi K, Matsuura Y (2008) A single-amino-acid mutation in hepatitis C virus NS5A disrupting FKBP8 interaction impairs viral replication. J Virol 82:3480–3489PubMedCentralPubMedGoogle Scholar
  149. 149.
    Takayama S, Reed JC, Homma S (2003) Heat-shock proteins as regulators of apoptosis. Oncogene 22:9041–9047PubMedGoogle Scholar
  150. 150.
    Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C (2008) Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 12:743–761PubMedGoogle Scholar
  151. 151.
    Bai L, Xu S, Chen W, Li Z, Wang X, Tang H, Lin Y (2011) Blocking Nf-kappaB and Akt by Hsp90 inhibition sensitizes Smac mimetic compound 3-induced extrinsic apoptosis pathway and results in synergistic cancer cell death. Apoptosis 16:45–54PubMedCentralPubMedGoogle Scholar
  152. 152.
    Leng AM, Liu T, Yang J, Cui JF, Li XH, Zhu YN, Xiong T, Zhang G, Chen Y (2012) The apoptotic effect and associated signalling of HSP90 inhibitor 17-DMAG in hepatocellular carcinoma cells. Cell Biol Int 36:893–899PubMedGoogle Scholar
  153. 153.
    Lang SA, Moser C, Fichnter-Feigl S, Schachtschneider P, Hellerbrand C, Schmitz V, Schlitt HJ, Geissler EK, Stoeltzing O (2009) Targeting heat-shock protein 90 improves efficacy of rapamycin in a model of hepatocellular carcinoma in mice. Hepatology 49:523–532PubMedGoogle Scholar
  154. 154.
    Lachenmayer A, Toffanin S, Cabellos L, Alsinet C, Hoshida Y, Villanueva A, Minguez B, Tsai HW, Ward SC, Thung S, Friedman SL, Llovet JM (2012) Combination therapy for hepatocellular carcinoma: additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib. J Hepatol 56:1343–1350PubMedCentralPubMedGoogle Scholar
  155. 155.
    Pessione F, Degos F, Marcellin P, Duchatelle V, Njapoum C, Martinot-Peignoux M, Degott C, Valla D, Erlinger S, Rueff B (1998) Effect of alcohol consumption on serum hepatitis C virus RNA and histological lesions in chronic hepatitis C. Hepatology 27:1717–1722PubMedGoogle Scholar
  156. 156.
    Safdar K, Schiff ER (2004) Alcohol and hepatitis C. Semin Liver Dis 24:305–315PubMedGoogle Scholar
  157. 157.
    Anand BS, Thornby J (2005) Alcohol has no effect on hepatitis C virus replication: a meta-analysis. Gut 54:1468–1472PubMedCentralPubMedGoogle Scholar
  158. 158.
    Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1:106–113PubMedGoogle Scholar
  159. 159.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739PubMedGoogle Scholar
  160. 160.
    Jopling CL (2008) Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans 36:1220–1223PubMedGoogle Scholar
  161. 161.
    Jopling CL, Schutz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4:77–85PubMedCentralPubMedGoogle Scholar
  162. 162.
    Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–1581PubMedGoogle Scholar
  163. 163.
    Machlin ES, Sarnow P, Sagan SM (2011) Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci U S A 108:3193–3198PubMedCentralPubMedGoogle Scholar
  164. 164.
    Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS (2009) Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28:3526–3536PubMedCentralPubMedGoogle Scholar
  165. 165.
    Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST, Ghoshal K (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99:671–678PubMedCentralPubMedGoogle Scholar
  166. 166.
    Bala S, Szabo G (2012) MicroRNA signature in alcoholic liver disease. Int J Hepatol 2012:498232PubMedCentralPubMedGoogle Scholar
  167. 167.
    Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106:4402–4407PubMedCentralPubMedGoogle Scholar
  168. 168.
    Laterza OF, Scott MG, Garrett-Engele PW, Korenblat KM, Lockwood CM (2013) Circulating miR-122 as a potential biomarker of liver disease. Biomark Med 7:205–210PubMedGoogle Scholar
  169. 169.
    Van Der Meer AJ, Farid WR, Sonneveld MJ, De Ruiter PE, Boonstra A, Van Vuuren AJ, Verheij J, Hansen BE, De Knegt RJ, Van Der Laan LJ, Janssen HL (2013) Sensitive detection of hepatocellular injury in chronic hepatitis C patients with circulating hepatocyte-derived microRNA-122. J Viral Hepat 20:158–166PubMedGoogle Scholar
  170. 170.
    Szabo G, Bala S (2013) MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10:542–552PubMedCentralPubMedGoogle Scholar
  171. 171.
    Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, Huang Y, Chen HC, Lee CH, Tsai TF, Hsu MT, Wu JC, Huang HD, Shiao MS, Hsiao M, Tsou AP (2012) MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 122:2884–2897PubMedCentralPubMedGoogle Scholar
  172. 172.
    Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, Yu L, Bai S, La Perle K, Chivukula RR, Mao H, Wei M, Clark KR, Mendell JR, Caligiuri MA, Jacob ST, Mendell JT, Ghoshal K (2012) Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 122:2871–2883PubMedCentralPubMedGoogle Scholar
  173. 173.
    Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, Yadav A, Nuovo G, Kumar P, Ghoshal K (2009) MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 284:32015–32027PubMedCentralPubMedGoogle Scholar
  174. 174.
    Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Orum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201PubMedCentralPubMedGoogle Scholar
  175. 175.
    Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, Van Der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694PubMedGoogle Scholar
  176. 176.
    Sandler NG, Koh C, Roque A, Eccleston JL, Siegel RB, Demino M, Kleiner DE, Deeks SG, Liang TJ, Heller T, Douek DC (2011) Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection. Gastroenterology 141:1220–1230e1-3PubMedCentralPubMedGoogle Scholar
  177. 177.
    Caradonna L, Mastronardi ML, Magrone T, Cozzolongo R, Cuppone R, Manghisi OG, Caccavo D, Pellegrino NM, Amoroso A, Jirillo E, Amati L (2002) Biological and clinical significance of endotoxemia in the course of hepatitis C virus infection. Curr Pharm Des 8:995–1005PubMedGoogle Scholar
  178. 178.
    Welsch C, Jesudian A, Zeuzem S, Jacobson I (2012) New direct-acting antiviral agents for the treatment of hepatitis C virus infection and perspectives. Gut 61(Suppl 1):i36–i46PubMedGoogle Scholar
  179. 179.
    Sarrazin C, Hezode C, Zeuzem S, Pawlotsky JM (2012) Antiviral strategies in hepatitis C virus infection. J Hepatol 56(Suppl 1):S88–S100PubMedGoogle Scholar
  180. 180.
    Klibanov OM, Williams SH, Smith LS, Olin JL, Vickery SB (2011) Telaprevir: a novel NS3/4 protease inhibitor for the treatment of hepatitis C. Pharmacotherapy 31:951–974PubMedGoogle Scholar
  181. 181.
    Klibanov OM, Vickery SB, Olin JL, Smith LS, Williams SH (2012) Boceprevir: a novel NS3/4 protease inhibitor for the treatment of hepatitis C. Pharmacotherapy 32:173–190PubMedGoogle Scholar
  182. 182.
    Schinazi R, Halfon P, Marcellin P, Asselah T (2014) HCV direct-acting antiviral agents: the best interferon-free combinations. Liver Int 34(Suppl 1):69–78PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gyongyi Szabo
    • 1
  • Banishree Saha
    • 1
  • Terence N. Bukong
    • 1
  1. 1.Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations