Advertisement

Evolution and Nucleosynthesis of Very Massive Stars

  • Raphael HirschiEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 412)

Abstract

In this chapter, after a brief introduction and overview of stellar evolution, we discuss the evolution and nucleosynthesis of very massive stars (VMS: \(M > 100\,M_{\odot }\)) in the context of recent stellar evolution model calculations. This chapter covers the following aspects: general properties, evolution of surface properties, late central evolution, and nucleosynthesis including their dependence on metallicity, mass loss and rotation. Since very massive stars have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All VMS at metallicities close to solar end their life as WC(-WO) type Wolf-Rayet stars. Due to very important mass loss through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 \(M_{\odot }\). A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses is the enhanced abundances of neon and magnesium at the surface of WC stars. At solar metallicity, mass loss is so strong that even if a star is born with several hundred solar masses, it will end its life with less than 50 \(M_{\odot }\) (using current mass loss prescriptions). At the metallicity of the LMC and lower, on the other hand, mass loss is weaker and might enable stars to undergo pair-instability supernovae.

Keywords

Mass Loss Rate Stellar Wind Stellar Evolution Initial Mass Function Convective Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author thanks his collaborators at the University of Keele (C. Georgy), Geneva (G. Meynet, A. Maeder and Sylvia Ekström) and Malaysia (N. Yusof and H. Kassim) for their significant contributions to the results presented in this chapter. R. Hirschi acknowledges support from the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan and from the Eurogenesis EUROCORE programme. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement n. 306901.

References

  1. Abel, T., Bryan, G. L., & Norman, M. L. (2002). Science, 295, 93ADSCrossRefGoogle Scholar
  2. Bennett, M. E., Hirschi, R., Pignatari, M., et al. (2012). Monthy Notices of the Royal Astronomical Society, 420, 3047ADSCrossRefGoogle Scholar
  3. Bond, J. R., Arnett, W. D., & Carr, B. J. (1984). Astrophysics Journal, 280, 825ADSCrossRefGoogle Scholar
  4. Brüggen, M., & Hillebrandt, W. (2001). Monthy Notices of the Royal Astronomical Society, 323, 56ADSCrossRefGoogle Scholar
  5. Braithwaite, J. (2006). Astronomy and Astrophysics, 449, 451zbMATHADSCrossRefGoogle Scholar
  6. Bromm, V., Coppi, P. S., & Larson, R. B. (1999). Astrophysics Journal Letters, 527, L5ADSCrossRefGoogle Scholar
  7. Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. (2007). Astrophysics Journal, 664, 416ADSCrossRefGoogle Scholar
  8. Canuto, V. M. (2002). Astronomy and Astrophysics, 384, 1119ADSCrossRefGoogle Scholar
  9. Chaboyer, B., & Zahn, J.-P. (1992). Astronomy and Astrophysics, 253, 173zbMATHADSGoogle Scholar
  10. Chatzopoulos, E., & Wheeler, J. C. (2012). Astrophysics Journal, 748, 42ADSCrossRefGoogle Scholar
  11. Chieffi, A., & Limongi, M. (2013). Astrophysics Journal, 764, 21ADSCrossRefGoogle Scholar
  12. Chieffi, A., Limongi, M., & Straniero, O. (1998). Astrophysics Journal, 502, 737ADSCrossRefGoogle Scholar
  13. Christlieb, N., Bessell, M. S., Beers, T. C., et al. (2002). Nature, 419, 904ADSCrossRefGoogle Scholar
  14. Crowther, P. A. (2001). In D. Vanbeveren (Ed.), Astrophysics and Space Science Library (The Influence of Binaries on stellar population studies, Vol. 264, p. 215). ISBN: 0792371046, Springer.Google Scholar
  15. Crowther, P. A., Hirschi, R., Walborn, N., & N., Y. (2012). In L. Drissen, C. Robert, N. St-Louis, & A. Moffat (Eds.) Four decades of research on massive stars (Astronomical Society of the Pacific, San Fransisco, conference series)Google Scholar
  16. Crowther, P. A., Schnurr, O., Hirschi, R., et al. (2010). Monthy Notices of the Royal Astronomical Society, 408, 731ADSCrossRefGoogle Scholar
  17. de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. (1988a). Astronomy and Astrophysics Supplement, 72, 259ADSGoogle Scholar
  18. de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. (1988b). Astronomy and Astrophysics Supplement, 72, 259ADSGoogle Scholar
  19. Dessart, L., O’Connor, E., & Ott, C. D. (2012). Astrophysics Journal, 754, 76ADSCrossRefGoogle Scholar
  20. Dessart, L., Waldman, R., Livne, E., Hillier, D. J., & Blondin, S. (2013). Monthy Notices of the Royal Astronomical Society, 428, 3227ADSCrossRefGoogle Scholar
  21. Eggenberger, P., Meynet, G., Maeder, A., et al. (2007). Astrophysics and Space Science, 263 Google Scholar
  22. Ekström, S., Georgy, C., Eggenberger, P., et al. (2012). Astronomy and Astrophysics, 537, A146ADSCrossRefGoogle Scholar
  23. Ekström, S., Meynet, G., Chiappini, C., Hirschi, R., & Maeder, A. (2008). Astronomy and Astrophysics, 489, 685ADSCrossRefGoogle Scholar
  24. Eldridge, J. J., Izzard, R. G., & Tout, C. A. (2008). Monthy Notices of the Royal Astronomical Society, 384, 1109ADSCrossRefGoogle Scholar
  25. Eldridge, J. J., & Vink, J. S. (2006). Astronomy and Astrophysics, 452, 295ADSCrossRefGoogle Scholar
  26. Figer, D. F. (2005). Nature, 434, 192ADSCrossRefGoogle Scholar
  27. Frebel, A., Aoki, W., & Christlieb, N., e. a. (2005). Nature, 434, 871Google Scholar
  28. Fricke, K. (1968). Zeitschrift fur Astrophysics, 68, 317ADSGoogle Scholar
  29. Frischknecht, U., Hirschi, R., Meynet, G., et al. (2010). Astronomy and Astrophysics, 522, A39ADSCrossRefGoogle Scholar
  30. Fryer, C. L., Woosley, S. E., & Heger, A. (2001). Astrophysics Journal, 550, 372ADSCrossRefGoogle Scholar
  31. Georgy, C., Ekström, S., Meynet, G., et al. (2012). Astronomy and Astrophysics, 542, A29ADSCrossRefGoogle Scholar
  32. Georgy, C., Ekström, S., Eggenberger, P., et al. (2013). Astronomy and Astrophysics, 558, A103ADSCrossRefGoogle Scholar
  33. Georgy, C., Meynet, G., & Maeder, A. (2011) Astronomy and Astrophysics, 527, A52ADSCrossRefGoogle Scholar
  34. Goldreich, P., & Schubert, G. (1967). Astrophysics Journal, 150, 571ADSCrossRefGoogle Scholar
  35. Gräfener, G., & Hamann, W.-R. (2008). Astronomy and Astrophysics, 482, 945ADSCrossRefGoogle Scholar
  36. Greif, T. H., Glover, S. C. O., Bromm, V., & Klessen, R. S. (2010). Astrophysics Journal, 716, 510ADSCrossRefGoogle Scholar
  37. Hamann, W.-R., Gräfener, G., & Liermann, A. (2006). Astronomy and Astrophysics, 457, 1015ADSCrossRefGoogle Scholar
  38. Heger, A., Langer, N., & Woosley, S. E. (2000). Astrophysics Journal, 528, 368ADSCrossRefGoogle Scholar
  39. Heger, A. & Woosley, S. E. (2002). Astrophysics Journal, 567, 532ADSCrossRefGoogle Scholar
  40. Hirschi, R. (2007). Astronomy and Astrophysics, 461, 571ADSCrossRefGoogle Scholar
  41. Hirschi, R. & Maeder, A. (2010). Astronomy and Astrophysics, 519, A16ADSCrossRefGoogle Scholar
  42. Hirschi, R., Meynet, G., & Maeder, A. (2004a). Astronomy and Astrophysics, 425, 649zbMATHADSCrossRefGoogle Scholar
  43. Hirschi, R., Meynet, G., & Maeder, A. (2004b). Astronomy and Astrophysics, 425, 649zbMATHADSCrossRefGoogle Scholar
  44. Hirschi, R., Meynet, G., & Maeder, A. (2005). Astronomy and Astrophysics, 443, 581ADSCrossRefGoogle Scholar
  45. Kippenhahn, R., & Weigert, A. (1990). Stellar structure and evolution. Berlin/New York, Springer.zbMATHCrossRefGoogle Scholar
  46. Kippenhahn, R., Weigert, A., & Hofmeister, E. (1967). In B. Alder, S. Fernbach, & M. Rotenberg (Eds.), Methods in Computational Physics (Vol. 7). New York: Academic Press.Google Scholar
  47. Knobloch, E., & Spruit, H. C. (1983). Astronomy and Astrophysics, 125, 59zbMATHADSGoogle Scholar
  48. Krtička, J., Owocki, S. P., & Meynet, G. (2011). Astronomy and Astrophysics, 527, A84ADSCrossRefGoogle Scholar
  49. Langer, N. (2012). ARA&A, 50, 107ADSCrossRefGoogle Scholar
  50. Maeder, A. (1980). Astronomy and Astrophysics, 92, 101ADSGoogle Scholar
  51. Maeder, A. (1997). Astronomy and Astrophysics, 321, 134ADSGoogle Scholar
  52. Maeder, A. (2003). Astronomy and Astrophysics, 399, 263ADSCrossRefGoogle Scholar
  53. Maeder, A. (2009). Physics, formation and evolution of rotating stars. Berlin/Heidelberg, Springer.Google Scholar
  54. Maeder, A., Georgy, C., Meynet, G., & Ekström, S. (2012). Astronomy and Astrophysics, 539, A110ADSCrossRefGoogle Scholar
  55. Maeder, A., & Meynet, G. (2000). Astronomy and Astrophysics, 361, 159ADSGoogle Scholar
  56. Meynet, G., & Maeder, A. (2002). Astronomy and Astrophysics, 390, 561ADSCrossRefGoogle Scholar
  57. Maeder, A., & Meynet, G. (2005). Astronomy and Astrophysics, 440, 1041ADSCrossRefGoogle Scholar
  58. Maeder, A., & Meynet, G. (2012). Reviews of Modern Physics, 84, 25ADSCrossRefGoogle Scholar
  59. Maeder, A., & Zahn, J. (1998). Astronomy and Astrophysics, 334, 1000ADSGoogle Scholar
  60. Meynet, G., & Maeder, A. (1997). Astronomy and Astrophysics, 321, 465ADSGoogle Scholar
  61. Meynet, G., & Maeder, A. (2005). Astronomy and Astrophysics, 429, 581ADSCrossRefGoogle Scholar
  62. Muijres, L. E., de Koter, A., Vink, J. S., et al. (2011). Astronomy and Astrophysics, 526, A32ADSCrossRefGoogle Scholar
  63. Nugis, T., & Lamers, H. J. G. L. M. (2000a). Astronomy and Astrophysics, 360, 227Google Scholar
  64. Nugis, T., & Lamers, H. J. G. L. M. (2000b). Astronomy and Astrophysics, 360, 227Google Scholar
  65. O’Connor, E., & Ott, C. D. (2011). Astrophysics Journal, 730, 70ADSCrossRefGoogle Scholar
  66. Oey, M. S., & Clarke, C. J. (2005). Astrophysics Journal Letters, 620, L43ADSCrossRefGoogle Scholar
  67. Ott, C. D., Burrows, A., Livne, E., & Walder, R. (2004). Astrophysics Journal, 600, 834ADSCrossRefGoogle Scholar
  68. Paxton, B., Bildsten, L., Dotter, A., et al. (2011). Astrophysics Journal Supplement Series, 192, 3ADSCrossRefGoogle Scholar
  69. Potter, A. T., Chitre, S. M., & Tout, C. A. (2012). Monthy Notices of the Royal Astronomical Society, 424, 2358ADSCrossRefGoogle Scholar
  70. Salpeter, E. E. (1955). Astrophysics Journal, 121, 161ADSCrossRefGoogle Scholar
  71. Sander, A., Hamann, W.-R., & Todt, H. (2012). Astronomy and Astrophysics, 540, A144ADSCrossRefGoogle Scholar
  72. Schneider, F. R. N., Izzard, R. G., de Mink, S. E., et al. (2014). Astrophysics Journal, 780, 117ADSCrossRefGoogle Scholar
  73. Shapiro, S. L. & Teukolsky, S. A. (1983). Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Research supported by the National Science Foundation, p. 663) New York: Wiley-Interscience. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471873160.html
  74. Spruit, H. C. (2002). Astronomy and Astrophysics, 381, 923ADSCrossRefGoogle Scholar
  75. Stacy, A., Greif, T. H., & Bromm, V. (2010). Monthy Notices of the Royal Astronomical Society, 403, 45ADSCrossRefGoogle Scholar
  76. Sylvester, R. J., Skinner, C. J., & Barlow, M. J. (1998). Monthy Notices of the Royal Astronomical Society, 301, 1083ADSCrossRefGoogle Scholar
  77. Umeda, H., & Nomoto, K. (2002). Astrophysics Journal, 565, 385ADSCrossRefGoogle Scholar
  78. van Loon, J. T., Groenewegen, M. A. T., de Koter, A., et al. (1999). Astronomy and Astrophysics, 351, 559ADSGoogle Scholar
  79. Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. (2001a). Astronomy and Astrophysics, 369, 574Google Scholar
  80. Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. (2001b). Astronomy and Astrophysics, 369, 574Google Scholar
  81. Vink, J. S., Gräfener, G., & Harries, T. J. (2011a). Astronomy and Astrophysics, 536, L10ADSCrossRefGoogle Scholar
  82. Vink, J. S., Muijres, L. E., Anthonisse, B., de Koter, A., Gräfener, G., Langer, N., (2011b). Wind modelling of very massive stars up to 300 solar masses. Astronomy and Astrophysics, 531, A132. doi: 10.1051/0004-6361/201116614. Provided by the SAO/NASA Astrophysics Data System http://adsabs.harvard.edu/abs/2011A26A...531A.132V
  83. von Zeipel, H. (1924). Monthy Notices of the Royal Astronomical Society, 84, 665ADSCrossRefGoogle Scholar
  84. Walder, R., Folini, D., & Meynet, G. (2011). Space Science Reviews, 125 Google Scholar
  85. Wheeler, J. C., Yi, I., Höflich, P., & Wang, L. (2000). Astrophysics Journal, 537, 810ADSCrossRefGoogle Scholar
  86. Woosley, S. E. (1993). Astrophysics Journal, 405, 273ADSCrossRefGoogle Scholar
  87. Woosley, S. E. & Heger, A. (2006). Astrophysics Journal, 637, 914ADSCrossRefGoogle Scholar
  88. Yoon, S.-C., Dierks, A., & Langer, N. (2012). Astronomy and Astrophysics, 542, A113ADSCrossRefGoogle Scholar
  89. Yoon, S.-C. & Langer, N. (2005). Astronomy and Astrophysics, 443, 643ADSCrossRefGoogle Scholar
  90. Yoon, S.-C., Langer, N., & Norman, C. (2006). Astronomy and Astrophysics, 460, 199ADSCrossRefGoogle Scholar
  91. Yoshida, T. & Umeda, H. (2011). Monthy Notices of the Royal Astronomical Society, 412, L78ADSCrossRefGoogle Scholar
  92. Yusof, N., Hirschi, R., Meynet, G., et al. (2013). Monthy Notices of the Royal Astronomical Society, 433, 1114ADSCrossRefGoogle Scholar
  93. Zahn, J., Brun, A. S., & Mathis, S. (2007). Astronomy and Astrophysics, 474, 145zbMATHADSCrossRefGoogle Scholar
  94. Zahn, J.-P. (1992). Astronomy and Astrophysics, 265, 115ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Astrophysics, Lennard-Jones Labs 2.09, EPSAMKeele UniversityStaffordshireUK
  2. 2.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of TokyoKashiwaJapan

Personalised recommendations