Skip to main content

Advanced Imaging, Teleproctoring, and Off-Site Surgery

  • Chapter
  • First Online:
Essentials of Robotic Surgery

Abstract

Since its introduction into clinical practice in 2000, robotic-assisted surgery has become rapidly adopted worldwide. The future of robotic surgery holds much promise for ongoing technological advancement. In particular, the robotic platform allows for development into other areas of the computer integrated surgery spectrum, from introducing imaging data into the operating room console to expanding surgical expertise outside the operating room to remote areas. This chapter will discuss the future of robotic surgery, focusing on the integration of advanced imaging systems, teleproctoring, and telesurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor R, Menciassi A, Fichtinger G, Dario P. Medical robotics and computer-integrated surgery. In: Siciliano B, Khatib O, editors. Springer handbook of robotics. Berlin\Heidelberg: Springer; 2008. p. 1199–222.

    Chapter  Google Scholar 

  2. Camarillo DB, Krummel TM, Salisbury Jr JK. Robotic technology in surgery: past, present, and future. Am J Surg. 2004;188(4A Suppl):2S–15.

    Article  PubMed  Google Scholar 

  3. Taylor RH, Stoianovici D. Medical robotics in computer-integrated surgery. Robotics and Automation. IEEE Trans. 2003;19(5):765–81.

    Google Scholar 

  4. Satava R. Future directions in robotic surgery. In: Rosen J, Hannaford B, Satava RM, editors. Surgical robotics. New York: Springer; 2011. p. 3–11.

    Chapter  Google Scholar 

  5. Gomes P. Surgical robotics: reviewing the past, analysing the present, imagining the future. Robot Comput Integ Manuf. 2011;27(2):261–6.

    Article  Google Scholar 

  6. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.

    Article  PubMed  CAS  Google Scholar 

  7. Guiliani A, Patriti A. Perspectives: where shall we be 20 years from now? In: Calise F, Casciola L, editors. Minimally invasive surgery of the liver. Updates in surgery. Milano: Springer; 2013. p. 313–9.

    Chapter  Google Scholar 

  8. Intuitive Surgical. da Vince Surgical System SI Extended Features & Benefits 2013 [cited 2014 2/1/14]. Available from: http://intuitivesurgical.com/products/davinci_surgical_system/davinci_surgical_system_si/features-benefits.html

  9. Heemskerk J, Bouvy ND, Baeten CG. The end of robot-assisted laparoscopy? A critical appraisal of scientific evidence on the use of robot-assisted laparoscopic surgery. Surg Endosc. 2014;28(4):1388–98.

    Article  PubMed  Google Scholar 

  10. U.S. Food and Drug Administration. 510(k) Summary. 2013 September 13, 2013. Report No.: K124031.

    Google Scholar 

  11. U.S. Food and Drug Administration. 510(k) Summary 2011 February 4, 2011. Report No.: K101077.

    Google Scholar 

  12. Bae SU, Baek SJ, Hur H, Baik SH, Kim NK, Min BS. Intraoperative near infrared fluorescence imaging in robotic low anterior resection: three case reports. Yonsei Med J. 2013;54(4):1066–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, et al. Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc. 2013;27(6):2156–62.

    Article  PubMed  Google Scholar 

  14. Buchs NC, Hagen ME, Pugin F, Volonte F, Bucher P, Schiffer E, et al. Intra-operative fluorescent cholangiography using indocyanin green during robotic single site cholecystectomy. Int J Med Robot. 2012;8(4):436–40.

    Article  PubMed  Google Scholar 

  15. Buchs NC, Pugin F, Azagury DE, Jung M, Volonte F, Hagen ME, et al. Real-time near-infrared fluorescent cholangiography could shorten operative time during robotic single-site cholecystectomy. Surg Endosc. 2013;27(10):3897–901.

    Article  PubMed  Google Scholar 

  16. Calatayud D, Milone L, Elli EF, Giulianotti PC. ICG-fluorescence identification of a small aberrant biliary canaliculus during robotic cholecystectomy. Liver Int. 2012;32(4):602.

    Article  PubMed  Google Scholar 

  17. Manny TB, Pompeo AS, Hemal AK. Robotic partial adrenalectomy using indocyanine green dye with near-infrared imaging: the initial clinical experience. Urology. 2013;82(3):738–42.

    Article  PubMed  Google Scholar 

  18. Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichael JC, Stamos MJ, et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc. 2013;27(8):3003–8.

    Article  PubMed  Google Scholar 

  19. Wagner OJ, Louie BE, Vallieres E, Aye RW, Farivar AS. Near-infrared fluorescence imaging can help identify the contralateral phrenic nerve during robotic thymectomy. Ann Thorac Surg. 2012;94(2):622–5.

    Article  PubMed  Google Scholar 

  20. Tobis S, Knopf J, Silvers C, Yao J, Rashid H, Wu G, et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol. 2011;186(1):47–52.

    Article  PubMed  Google Scholar 

  21. Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10(9):507–18.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Nguyen QT, Olson ES, Aguilera TA, Jiang T, Scadeng M, Ellies LG, et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci U S A. 2010;107(9):4317–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Wedmid A, Llukani E, Lee DI. Future perspectives in robotic surgery. BJU Int. 2011;108(6 Pt 2):1028–36.

    Article  PubMed  Google Scholar 

  24. Tan GY, Goel RK, Kaouk JH, Tewari AK. Technological advances in robotic-assisted laparoscopic surgery. Urol Clin North Am. 2009;36(2):237–49. ix.

    Article  PubMed  Google Scholar 

  25. Nicolau S, Soler L, Mutter D, Marescaux J. Augmented reality in laparoscopic surgical oncology. Surg Oncol. 2011;20(3):189–201.

    Article  PubMed  Google Scholar 

  26. Marescaux J, Rubino F, Arenas M, Mutter D, Soler L. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA. 2004;292(18):2214–5.

    PubMed  CAS  Google Scholar 

  27. Shuhaiber JH. Augmented reality in surgery. Arch Surg. 2004;139(2):170–4.

    Article  PubMed  Google Scholar 

  28. Teber D, Baumhauer M, Guven EO, Rassweiler J. Robotic and imaging in urological surgery. Curr Opin Urol. 2009;19(1):108–13.

    Article  PubMed  Google Scholar 

  29. Volonte F, Buchs NC, Pugin F, Spaltenstein J, Schiltz B, Jung M, et al. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci robotic console. Int J Med Robot. 2013;9(3):e34–8.

    Article  PubMed  Google Scholar 

  30. Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology. 2009;73(4):896–900.

    Article  PubMed  Google Scholar 

  31. Tsuda S. Teleproctoring in Surgery. In: Tichansky DS, Morton J, Jones DB, editors. The SAGES manual of quality, outcomes, and patient safety. New York: Springer; 2012. p. 513–7.

    Chapter  Google Scholar 

  32. Marescaux J, Rubino F. Telesurgery, telementoring, virtual surgery, and telerobotics. Curr Urol Rep. 2003;4(2):109–13.

    Article  PubMed  Google Scholar 

  33. Anvari M. Telesurgery: remote knowledge translation in clinical surgery. World J Surg. 2007;31(8):1545–50.

    Article  PubMed  Google Scholar 

  34. Okrainec A, Henao O, Azzie G. Telesimulation: an effective method for teaching the fundamentals of laparoscopic surgery in resource-restricted countries. Surg Endosc. 2010;24(2):417–22.

    Article  PubMed  Google Scholar 

  35. Kavoussi LR, Moore RG, Partin AW, Bender JS, Zenilman ME, Satava RM. Telerobotic assisted laparoscopic surgery: initial laboratory and clinical experience. Urology. 1994;44(1):15–9.

    Article  PubMed  CAS  Google Scholar 

  36. Panait L, Rafiq A, Tomulescu V, Boanca C, Popescu I, Carbonell A, et al. Telementoring versus on-site mentoring in virtual reality-based surgical training. Surg Endosc. 2006;20(1):113–8.

    Article  PubMed  CAS  Google Scholar 

  37. Augestad KM, Bellika JG, Budrionis A, Chomutare T, Lindsetmo RO, Patel H, et al. Surgical telementoring in knowledge translation–clinical outcomes and educational benefits: a comprehensive review. Surg Innov. 2013;20(3):273–81.

    Article  PubMed  Google Scholar 

  38. Haidegger T, Sandor J, Benyo Z. Surgery in space: the future of robotic telesurgery. Surg Endosc. 2011;25(3):681–90.

    Article  PubMed  Google Scholar 

  39. Doarn CR, Moses GR. Overcoming barriers to wider adoption of mobile telerobotic surgery: engineering, clinical and business challenges. In: Rosen J, Hannaford B, Satava RM, editors. Surgical robotics: systems applications and visions. New York: Springer; 2011. p. 69–102.

    Chapter  Google Scholar 

  40. Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M, et al. Transatlantic robot-assisted telesurgery. Nature. 2001;413(6854):379–80.

    Article  PubMed  CAS  Google Scholar 

  41. Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487–92.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Anvari M, McKinley C, Stein H. Establishment of the world's first telerobotic remote surgical service: for provision of advanced laparoscopic surgery in a rural community. Ann Surg. 2005;241(3):460–4.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sterbis JR, Hanly EJ, Herman BC, Marohn MR, Broderick TJ, Shih SP, et al. Transcontinental telesurgical nephrectomy using the da Vinci robot in a porcine model. Urology. 2008;71(5):971–3.

    Article  PubMed  Google Scholar 

  44. Harnett BM, Doarn CR, Rosen J, Hannaford B, Broderick TJ. Evaluation of unmanned airborne vehicles and mobile robotic telesurgery in an extreme environment. Telemed J E Health. 2008;14(6):539–44.

    Article  PubMed  Google Scholar 

  45. Lum MJ, Rosen J, King H, Friedman DC, Donlin G, Sankaranarayanan G, et al. Telesurgery via Unmanned Aerial Vehicle (UAV) with a field deployable surgical robot. Stud Health Technol Inform. 2007;125:313–5.

    PubMed  Google Scholar 

  46. Doarn CR, Anvari M, Low T, Broderick TJ. Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed J E Health. 2009;15(4):325–35.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trang Kim Nguyen M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nguyen, T.K., El-Hayek, K. (2015). Advanced Imaging, Teleproctoring, and Off-Site Surgery. In: Kroh, M., Chalikonda, S. (eds) Essentials of Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-09564-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09564-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09563-9

  • Online ISBN: 978-3-319-09564-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics