Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 500 Accesses

Abstract

Repeat proteins account for more than 5 % of the proteins in multi-cellular organisms. In contrast to globular proteins that have extensive long-range contacts, the structures of repeat proteins show mainly intra- and inter-repeat local contacts. These simple topologies facilitate modeling of the folding mechanism. Tetratricopeptide repeat (TPR) is a 34-amino acid helix-turn-helix motif found in tandem arrays in many natural proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21(11):932–939

    Article  CAS  Google Scholar 

  2. Forwood JK et al (2010) Quantitative structural analysis of importin-beta flexibility: paradigm for solenoid protein structures. Structure 18(9):1171–1183

    Article  CAS  Google Scholar 

  3. Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolution. J Struct Biol 134(2–3):117–131

    Article  CAS  Google Scholar 

  4. Javadi Y, Itzhaki LS (2013) Tandem-repeat proteins: regularity plus modularity equals design-ability. Curr Opin Struct Biol 23(4):622–631

    Article  CAS  Google Scholar 

  5. Mello CC, Barrick D (2004) An experimentally determined protein folding energy landscape. Proc Natl Acad Sci USA 101(39):14102–14107

    Article  CAS  Google Scholar 

  6. Forrer P et al (2004) Consensus design of repeat proteins. ChemBioChem 5(2):183–189

    Article  CAS  Google Scholar 

  7. Main ER et al (2003) Design of stable alpha-helical arrays from an idealized TPR motif. Structure 11(5):497–508

    Article  CAS  Google Scholar 

  8. Mosavi LK, Minor DL Jr, Peng ZY (2002) Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA 99(25):16029–16034

    Article  CAS  Google Scholar 

  9. Binz HK et al (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 332(2):489–503

    Article  CAS  Google Scholar 

  10. Stumpp MT et al (2003) Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J Mol Biol 332(2):471–487

    Article  CAS  Google Scholar 

  11. Nikkhah M et al (2006) Engineering of beta-propeller protein scaffolds by multiple gene duplication and fusion of an idealized WD repeat. Biomol Eng 23(4):185–194

    Article  CAS  Google Scholar 

  12. Parmeggiani F et al (2008) Designed armadillo repeat proteins as general peptide-binding scaffolds: Consensus design and computational optimization of the hydrophobic core. J Mol Biol 376(5):1282–1304

    Article  CAS  Google Scholar 

  13. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28(12):655–662

    Article  Google Scholar 

  14. Tang KS et al (1999) Stability and folding of the tumour suppressor protein p16. J Mol Biol 285(4):1869–1886

    Article  CAS  Google Scholar 

  15. Das AK, Cohen PW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 17(5):1192–1199

    Article  CAS  Google Scholar 

  16. Zeytuni N, Zarivach R (2012) Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 20(3):397–405

    Article  CAS  Google Scholar 

  17. Fransen M et al (2008) Comparison of the PTS1- and Rab8b-binding properties of Pex5p and Pex5Rp/TRIP8b. Biochim Et Biophys Acta-Mol Cell Res 1783(5):864–873

    Article  CAS  Google Scholar 

  18. Ramsey AJ, Russell LC, Chinkers M (2009) C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins. Biochem J 423:411–419

    Article  CAS  Google Scholar 

  19. Young JC, Barral JM, Hartl FU (2003) More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 28(10):541–547

    Article  CAS  Google Scholar 

  20. Smith RL, Redd MJ, Johnson AD (1995) The tetratricopeptide repeats of ssn6 interact with the homeo domain of alpha-2. Genes Dev 9(23):2903–2910

    Article  CAS  Google Scholar 

  21. Edqvist PJ et al (2006) Tetratricopeptide repeats in the type III secretion chaperone, LcrH: their role in substrate binding and secretion. Mol Microbiol 59(1):31–44

    Article  CAS  Google Scholar 

  22. Tiwari D et al (2009) Key residues in mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. J Biol Chem 284(40):27467–27479

    Article  CAS  Google Scholar 

  23. Mirus O et al (2009) Evolutionarily evolved discriminators in the 3-TPR domain of the Toc64 family involved in protein translocation at the outer membrane of chloroplasts and mitochondria. J Mol Model 15(8):971–982

    Article  CAS  Google Scholar 

  24. Baker MJ et al (2007) Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol 17(9):456–464

    Article  CAS  Google Scholar 

  25. Zeytuni N et al (2011) Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc Natl Acad Sci USA 108(33):E480–E487

    Article  CAS  Google Scholar 

  26. Gatsos X et al (2008) Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol Rev 32(6):995–1009

    Article  CAS  Google Scholar 

  27. Cortajarena AL et al (2010) Designed proteins to modulate cellular networks. ACS Chem Biol 5(6):545–552

    Article  CAS  Google Scholar 

  28. Cortajarena AL et al (2004) Protein design to understand peptide ligand recognition by tetratricopeptide repeat proteins. Protein Eng Des Sel 17(4):399–409

    Article  CAS  Google Scholar 

  29. Cortajarena AL, Yi F, Regan L (2008) Designed TPR modules as novel anticancer agents. ACS Chem Biol 3(3):161–166

    Article  CAS  Google Scholar 

  30. Grove TZ, Regan L, Cortajarena AL (2013) Nanostructured functional films from engineered repeat proteins. J Roy Soc Interface 10(83):20130051

    Article  Google Scholar 

  31. Wetzel SK et al (2008) Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins. J Mol Biol 376(1):241–257

    Article  CAS  Google Scholar 

  32. Javadi Y, Main ER (2009) Exploring the folding energy landscape of a series of designed consensus tetratricopeptide repeat proteins. Proc Natl Acad Sci USA 106(41):17383–17388

    Article  CAS  Google Scholar 

  33. Gallavotti G (1999) Statistical mechanics : a short treatise. Texts and monographs in physics, Springer, Berlin, xiv, 339 p

    Google Scholar 

  34. Scott RA 3rd (1967) Statistical mechanical studies of polypeptides. 1. Theory of the helix-coil transition including right- and left-handed helical states. Biopolymers 5(10):931–951

    Article  CAS  Google Scholar 

  35. Kajander T et al (2005) A new folding paradigm for repeat proteins. J Am Chem Soc 127(29):10188–10190

    Article  CAS  Google Scholar 

  36. Cortajarena AL, Mochrie SGJ, Regan L (2011) Modulating repeat protein stability: the effect of individual helix stability on the collective behavior of the ensemble. Protein Sci 20(6):1042–1047

    Article  CAS  Google Scholar 

  37. Phillips JJ et al (2012) Modulation of the multistate folding of designed TPR proteins through intrinsic and extrinsic factors. Protein Sci 21(3):327–338

    Article  CAS  Google Scholar 

  38. Bradley CM, Barrick D (2002) Limits of cooperativity in a structurally modular protein: response of the Notch ankyrin domain to analogous alanine substitutions in each repeat. J Mol Biol 324(2):373–386

    Article  CAS  Google Scholar 

  39. Zweifel ME, Barrick D (2001) Studies of the ankyrin repeats of the Drosophila melanogaster Notch receptor. 1. Solution conformational and hydrodynamic properties. Biochemistry 40(48):14344–14356

    Article  CAS  Google Scholar 

  40. Ferreiro DU et al (2008) The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures. PLoS Comput Biol 4(5):e1000070

    Article  Google Scholar 

  41. Hagai T et al (2012) Modulation of folding kinetics of repeat proteins: interplay between intra- and interdomain interactions. Biophys J 103(7):1555–1565

    Article  CAS  Google Scholar 

  42. Serquera D et al (2010) Mechanical unfolding of an ankyrin repeat protein. Biophys J 98(7):1294–1301

    Article  CAS  Google Scholar 

  43. Karplus M, Weaver DL (1976) Protein-folding dynamics. Nature 260(5550):404–406

    Article  CAS  Google Scholar 

  44. Travaglini-Allocatelli C et al (2009) Folding and stability of globular proteins and implications for function. Curr Opin Struct Biol 19(1):3–7

    Article  CAS  Google Scholar 

  45. Sali A, Shakhnovich E, Karplus M (1994) How does a protein fold? Nature 369(6477):248–251

    Article  CAS  Google Scholar 

  46. Karplus M (1997) The Levinthal paradox: yesterday and today. Fold Des 2(4):S69–S75

    Article  CAS  Google Scholar 

  47. Schuler B (2005) Single-molecule fluorescence spectroscopy of protein folding. ChemPhysChem 6(7):1206–1220

    Article  CAS  Google Scholar 

  48. Stigler J et al (2011) The complex folding network of single calmodulin molecules. Science 334(6055):512–516

    Article  CAS  Google Scholar 

  49. Borgia A, Williams PM, Clarke J (2008) Single-molecule studies of protein folding. Annu Rev Biochem 77:101–125

    Article  CAS  Google Scholar 

  50. Haran G (2003) Single-molecule fluorescence spectroscopy of biomolecular folding. J Phys Condens Matter 15:R1291–R1317

    Article  CAS  Google Scholar 

  51. Privalov PL (1979) Stability of proteins: small globular proteins. Adv Protein Chem 33:167–241

    Article  CAS  Google Scholar 

  52. Weikl TR, Palassini M, Dill KA (2004) Cooperativity in two-state protein folding kinetics. Protein Sci 13(3):822–829

    Article  CAS  Google Scholar 

  53. Segawa SI, Sugihara M (1984) Characterization of the transition-state of Lysozyme unfolding. 1. effect of protein solvent interactions on the transition-state. Biopolymers 23(11):2473–2488

    Article  CAS  Google Scholar 

  54. Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30(43):10428–10435

    Article  CAS  Google Scholar 

  55. Baker D (2000) A surprising simplicity to protein folding. Nature 405(6782):39–42

    Article  CAS  Google Scholar 

  56. Kubelka J, Hofrichter J, Eaton WA (2004) The protein folding ‘speed limit’. Curr Opin Struct Biol 14(1):76–88

    Article  CAS  Google Scholar 

  57. Ptitsyn OB et al (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 262(1):20–24

    Article  CAS  Google Scholar 

  58. Christensen H, Pain RH (1991) Molten globule intermediates and protein folding. Eur Biophys J 19(5):221–229

    CAS  Google Scholar 

  59. Ohgushi M, Wada A (1983) Molten-globule state—a compact form of globular-proteins with mobile side-chains. FEBS Lett 164(1):21–24

    Article  CAS  Google Scholar 

  60. Carrey EA, Pain RH (1978) Conformation of a stable intermediate on the folding pathway of Staphylococcus aureus penicillinase. Biochim Biophys Acta 533(1):12–22

    Article  CAS  Google Scholar 

  61. Baum J et al (1989) Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry 28(1):7–13

    Article  CAS  Google Scholar 

  62. Roder H, Elove GA, Englander SW (1988) Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335(6192):700–704

    Article  CAS  Google Scholar 

  63. Pirchi M et al (2011) Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein. Nat Commun 2:493

    Article  Google Scholar 

  64. Chung HS et al (2011) Extracting rate coefficients from single-molecule photon trajectories and fret efficiency histograms for a fast-folding protein. J Phys Chem A 115(16):3642–3656

    Article  CAS  Google Scholar 

  65. Knott M, Chan HS (2006) Criteria for downhill protein folding: calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity. Proteins 65(2):373–391

    Article  CAS  Google Scholar 

  66. Liu J et al (2012) Exploring one-state downhill protein folding in single molecules. Proc Natl Acad Sci USA 109(1):179–184

    Article  CAS  Google Scholar 

  67. Favrin G et al (2003) Two-state folding over a weak free-energy barrier. Biophys J 85(3):1457–1465

    Article  CAS  Google Scholar 

  68. Naganathan AN, Orozco M (2011) The native ensemble and folding of a protein molten-globule: functional consequence of downhill folding. J Am Chem Soc 133(31):12154–12161

    Article  CAS  Google Scholar 

  69. Lindhoud S (2012) Visualization and charachterisation of apoflavodoxin folding, wageningen university. p 140

    Google Scholar 

  70. Engel A, Gaub HE, Muller DJ (1999) Atomic force microscopy: a forceful way with single molecules. Curr Biol 9(4):R133–R136

    Article  CAS  Google Scholar 

  71. Rief M et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112

    Article  CAS  Google Scholar 

  72. Kellermayer MS et al (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276(5315):1112–1116

    Article  CAS  Google Scholar 

  73. Moerner WE (2002) A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J Phys Chem B 106(5):910–927

    Article  CAS  Google Scholar 

  74. Haustein E, Schwille P (2004) Single-molecule spectroscopic methods. Curr Opin Struct Biol 14(5):531–540

    Article  CAS  Google Scholar 

  75. Michalet X et al (2003) The power and prospects of fluorescence microscopies and spectroscopies. Annu Rev Biophys Biomol Struct 32:161–182

    Article  CAS  Google Scholar 

  76. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516

    Article  CAS  Google Scholar 

  77. Forster T (1948) Zwischenmolecular engergiewanderung and floureszenz. Ann Phys Ny 2:55

    Article  CAS  Google Scholar 

  78. Schuler B, Lipman EA, Eaton WA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419(6908):743–747

    Article  CAS  Google Scholar 

  79. Borgia MB et al (2011) Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 474(7353):662–665

    Article  CAS  Google Scholar 

  80. Hanson JA et al (2007) Illuminating the mechanistic roles of enzyme conformational dynamics. Proc Natl Acad Sci USA 104(46):18055–18060

    Article  CAS  Google Scholar 

  81. Bae W, Choi M-G, Hyeon C, Shin Y-K, Yoon T-Y (2013) Real-time observation of multiple-protein complex formation with single-molecule FRET. J Am Chem Soc 135:10254–10257

    Article  CAS  Google Scholar 

  82. Truong K, Ikura M (2001) The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol 11(5):573–578

    Article  CAS  Google Scholar 

  83. Ohashi T et al (2007) An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins. Protein Sci 16(7):1429–1438

    Article  CAS  Google Scholar 

  84. Schuler B et al (2012) Application of confocal single-molecule FRET to intrinsically disordered proteins. Methods Mol Biol 896:21–45

    CAS  Google Scholar 

  85. Nath A et al (2012) The conformational ensembles of alpha-synuclein and tau: combining single-molecule FRET and simulations. Biophys J 103(9):1940–1949

    Article  CAS  Google Scholar 

  86. Blanchard SC (2009) Single-molecule observations of ribosome function. Curr Opin Struct Biol 19(1):103–109

    Article  CAS  Google Scholar 

  87. Adjobo-Hermans MJW et al (2011) Real-time visualization of heterotrimeric G protein Gq activation in living cells. Bmc Biol 9:32

    Article  CAS  Google Scholar 

  88. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683

    Article  CAS  Google Scholar 

  89. Zhuang XW (2005) Single-molecule RNA science. Annu Rev Biophys Biomol Struct 34:399–414

    Article  CAS  Google Scholar 

  90. Chung HS et al (2012) Single-molecule fluorescence experiments determine protein folding transition path times. Science 335(6071):981–984

    Article  CAS  Google Scholar 

  91. Lipman EA et al (2003) Single-molecule measurement of protein folding kinetics. Science 301(5637):1233–1235

    Article  CAS  Google Scholar 

  92. Wunderlich B et al (2013) Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nat Protoc 8(8):1459–1474

    Article  CAS  Google Scholar 

  93. Kinoshita M et al (2007) Development of a technique for the investigation of folding dynamics of single proteins for extended time periods. Proc Natl Acad Sci USA 104(25):10453–10458

    Article  CAS  Google Scholar 

  94. Schuler B, Eaton WA (2008) Protein folding studied by single-molecule FRET. Curr Opin Struct Biol 18(1):16–26

    Article  CAS  Google Scholar 

  95. Sherman E, Haran G (2006) Coil-globule transition in the denatured state of a small protein. Proc Natl Acad Sci USA 103(31):11539–11543

    Article  CAS  Google Scholar 

  96. Soranno A et al (2012) Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. Proc Natl Acad Sci USA 109(44):17800–17806

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharona Cohen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cohen, S. (2016). Introduction. In: Single-Molecule Fluorescence Spectroscopy of the Folding of a Repeat Protein. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-09558-5_1

Download citation

Publish with us

Policies and ethics