Understanding the Interrelationship Between Commodity and Stock Indices Daily Movement Using ACE and Recurrence Analysis

  • Kousik Guhathakurta
  • Norbert Marwan
  • Basabi Bhattacharya
  • A. Roy Chowdhury
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 103)

Abstract

The relationship between the temporal evolution of the commodity market and the stock market has long term implications for policy makers, and particularly in the case of emerging markets, the economy as a whole. We analyze the complex dynamics of the daily variation of two indices of stock and commodity exchange respectively of India. To understand whether there is any difference between emerging markets and developed markets in terms of a dynamic correlation between the two market indices, we also examine the complex dynamics of stock and commodity indices of the US market. We compare the daily variation of the commodity and stock prices in the two countries separately. For this purpose we have considered commodity India along with Dow Jones Industrial Average (DJIA) and Dow Jones-AIG Commodity (DJ-AIGCI) indices for stock and commodities, USA, from June 2005 to August 2008. To analyse the dynamics of the time variation of the indices we use a set of analytical methods based on recurrence plots. Our studies show that the dynamics of the Indian stock and commodity exchanges have a lagged correlation while those of US market have a lead correlation and a weaker correlation.

Keywords

Commodity Stock market Cross Recurrence Plot Recurrence Quantification Analysis ACE. 

References

  1. 1.
    Reddy, Y.V., Sebastin, A.: J Altern. Investments 11, 85 (2009). doi: 10.3905/JAI.2009.11.3.085 CrossRefGoogle Scholar
  2. 2.
    Voss, H., Kurths, J.: Phys. Lett. A 234(5), 336 (1997)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Eckmann, J.P., Kamphorst, S.O., Rullelle, D.: Europhys. Lett. 5, 973 (1987). doi: 10.1209/0295-5075/4/9/004 CrossRefGoogle Scholar
  4. 4.
    Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Phys. Rep. 438(5–6), 237 (2007). doi: 10.1016/j.physrep.2006.11.001 CrossRefMathSciNetGoogle Scholar
  5. 5.
    Pesaran, M., Potter, S.: Nonlinear Dynamics, Chaos and Econometrics. Wiley, New York (1993)MATHGoogle Scholar
  6. 6.
    Campbell, J., Lo, A., MacKinlay, A.: The Econometrics of Financial Markets. Princeton University Press, Princeton (1997)MATHGoogle Scholar
  7. 7.
    Barnett, W.A., Jungeilges, J.A., Gallant, A., Kaplan, D.T., Hinich, M.J., Jensen, M.J.: A single-blind controlled competition among tests for nonlinearity and chaos. J Econom. 82(1), 157–192 (2000). doi: 10.1016/S0304-4076(97)00081-X CrossRefGoogle Scholar
  8. 8.
    Hsieh, D.A.: J. Bus. 62, 339 (1989). doi: 10.1086/296466 CrossRefGoogle Scholar
  9. 9.
    Hsieh, D.A.: J. Finance 46, 1839 (1991). doi: 10.2307/2328575 CrossRefGoogle Scholar
  10. 10.
    Scheinkman, J., LeBaron, B.: J. Bus. 62, 311 (1989)CrossRefGoogle Scholar
  11. 11.
    Abhyankar, A., Copeland, L.S., Wong, W.: Econ. J. 105, 864 (1995)CrossRefGoogle Scholar
  12. 12.
    Steurer, E.: Neural Networks in the Capital Markets. Wiley, New York (1995)Google Scholar
  13. 13.
    Brooks, C.: Appl. Financ. Econ. 6(4), 307 (1996)CrossRefGoogle Scholar
  14. 14.
    Barkoulas, J., Travlos, N.: Appl. Financ. Econ. 8, 231 (1998). doi: 10.1080/096031098332998 CrossRefGoogle Scholar
  15. 15.
    Opong, K.K., Mulholland, G., Fox, A.F., Farahmand, K.: J. Empir. Finance 6(3), 267 (1999)CrossRefGoogle Scholar
  16. 16.
    Goswami, B., Ambika, G., Marwan, N., Kurths, J.: Phys. A 391, 4364 (2012). doi: 10.1016/j.physa.2012.04.018 CrossRefGoogle Scholar
  17. 17.
    Hinich, M., Patterson, D.: Economic complexity: chaos, sunspots, bubblesand nonlinearity. In: Barnett W., Geweke J., Shell K. (eds.) International Symposium in Economic Theory and Econometrics, pp. 383–409. Cambridge University Press, Cambridge (1989)Google Scholar
  18. 18.
    Taylor, M., Peel, D.: J. Int. Money Finance 19, 33 (2000)CrossRefGoogle Scholar
  19. 19.
    Sarno, L.: Appl. Econ. Lett. 7, 285 (2000)CrossRefGoogle Scholar
  20. 20.
    Bierens, H.J.: J. Econom. 77, 379 (1997). doi: 10.1016/S0304-4076(96)01820-9 CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Chortareas, G., Kapetanios, G., Shin, Y.: Econ. Lett. 77, 411 (2002)CrossRefMATHGoogle Scholar
  22. 22.
    Kapetanios, G., Shinn, Y., Snell, A.: J. Econom. 112, 359 (2003)CrossRefMATHGoogle Scholar
  23. 23.
    Baek, E., Brock, W.: Working Paper. Iowa State University and University of Wisconsin at Madison (1992)Google Scholar
  24. 24.
    Breiman, L., Friedman, J.H.: J. Am. Stat. Assoc. 80(391), 580 (1985)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Crowley, P.M.: Eur. Phys J. - Special Topics 164(1), 67 (2008). doi: 10.1140/epjst/e2008-00835-3
  26. 26.
    Crowley, P.M., Schultz, A.: Int. J. Bifurcat. Chaos 21(4), 1215 (2011). doi: 10.1142/S0218127411028957 CrossRefGoogle Scholar
  27. 27.
    Donner, R.V., Small, M., Donges, J.F., Marwan, N., Zou, Y., Xiang, R., Kurths, J.: Int. J. Bifurcat. Chaos 21(4), 1019 (2011). doi: 10.1142/S0218127411029021 CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Cross Recurrence Plot Toolbox. http://tocsy.pikpotsdam.de 21-Jul-2009
  29. 29.
    Voss, H.U., Kolodner, P., Abel, M., Kurths, J.: Phys. Rev. Lett. 83(17), 3422 (1999)CrossRefGoogle Scholar
  30. 30.
    Voss, H., Kurths, J.: Chaos Solitons Fractals 10(4), 805 (1999)Google Scholar
  31. 31.
    Fraser, A., Swinney, H.: Phys. Rev. A 33, 1134 (1986)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Kennel, M., Brown, R., Abarbanel, H.: Phys. Rev. A 45, 3403 (1992). doi: 10.1103/PhysRevA.45.3403 CrossRefGoogle Scholar
  33. 33.
    Marwan, N., Kurths, J.: Phys. Lett. A 302(5–60), 299 (2002)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Zbilut, J.P., Webber Jr, C.L.: Phys. Lett. A 171(3–4), 199 (1992). doi: 10.1016/0375-9601(92)90426-M CrossRefGoogle Scholar
  35. 35.
    Marwan, N.: Eur. Phys. J. - Special Topics 164(1), 3 (2008)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Marwan, N., Donges, J.F., Zou, Y., Donner, R.V., Kurths, J.: Phys. Lett. A 373(46), 4246 (2009). doi: 10.1016/j.physleta.2009.09.042 CrossRefMATHGoogle Scholar
  37. 37.
    Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J.: New J. Phys. 12(3), 033025 (2010). doi: 10.1088/1367-2630/12/3/033025 CrossRefGoogle Scholar
  38. 38.
    Zou, Y., Donner, R.V., Donges, J.F., Marwan, N., Kurths, J.: Chaos 20(4), 043130 (2010). doi: 10.1063/1.3523304 CrossRefGoogle Scholar
  39. 39.
    Donner, R.V., Heitzig, J., Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: Eur. Phys. J. B 84, 653 (2011). doi: 10.1140/epjb/e2011-10899-1 CrossRefMathSciNetGoogle Scholar
  40. 40.
    Schinkel, S., Dimigen, O., Marwan, N., Kurths, J.: Phys. Lett. A 373, 2245 (2009). doi: 10.1016/j.physleta.2009.04.045 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kousik Guhathakurta
    • 1
  • Norbert Marwan
    • 2
  • Basabi Bhattacharya
    • 3
  • A. Roy Chowdhury
    • 4
  1. 1.Indian Institute of Management KozhikodeIIMK CampusKozhikodeIndia
  2. 2.Potsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  3. 3.Department of EconomicsJadavpur UniversityKolkataIndia
  4. 4.Department of PhysicsJadavpur UniversityKolkataIndia

Personalised recommendations