Skip to main content

Recurrence Quantification as an Analysis of Temporal Coordination with Complex Signals

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 103))

Abstract

Ample past research demonstrates that human rhythmic behavior and rhythmic coordination reveal complex dynamics. More recently, researchers have begun to examine the dynamics of coordination with complex, fractal signals. Here, we present preliminary research investigating how recurrence quantification techniques might be applied to study temporal coordination with complex signals. Participants attempted to synchronize their rhythmic finger tapping behavior with metronomes with varying fractal scaling properties. The results demonstrated that coordination, as assessed by recurrence analyses, differed with the fractal scaling of the metronome stimulus. Overall, these results suggest that recurrence analyses may aid in understanding temporal coordination between complex systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There are ample resources available for those readers interested in the details of fractal analyses [1, 10, 11] and the current theoretical debates [1214].

  2. 2.

    These two fractal analyses are frequently used in studies of human behavioral data, but there are also maximum-likelihood techniques that are superior for verifying actual power-law scaling (see [18, 19]).

  3. 3.

    The primary difference between the two analyses is that, although both indicate the ITI series of participants synchronized with blue metronomes to be near-random on average (\(\upalpha \) \(\approx \) 0), PSD estimated \(\upalpha \) in the remaining conditions to be substantially greater than DFA (\(\upalpha \) \(\approx \) 0.7 versus 0.5). This difference, however, likely has little bearing on the further analyses described below.

  4. 4.

    Preliminary examination of the new ITI series suggested that the same parameter settings for delay (25), embedding dimension (3), and radius (10 % of the mean distance). Every series was also Z-scored prior to CRQA to ensure both series were on a standard scale.

References

  1. Eke, A., Herman, P., Bassingthwaighte, J., Raymond, G., Percival, D., Cannon, M., Balla, I., Ikrenyi, C.: Physiological time series: distinguishing fractal noises from motions. Pflügers Arch. 439, 403–415 (2000)

    Article  Google Scholar 

  2. Abney, D.H., Paxton, A., Kello, C.T., Dale, R.: Complexity matching in dyadic interaction. In: Davis, T., Passos, P., Dicks, M., Weast-Knapp, J.A. (eds.) Studies in Perception and Action XII. Proceedings from the Seventeenth International Conference on Perception and Action, Taylor & Francis (2013)

    Google Scholar 

  3. Marmelat, V., Delignières, D.: Strong anticipation: complexity matching in interpersonal coordination. Exp. Brain Res. 222, 137–148 (2012)

    Article  Google Scholar 

  4. Stephen, D.G., Stepp, N., Dixon, J.A., Turvey, M.T.: Strong anticipation: sensitivity to long-range correlations in synchronization behavior. Phys. A 387, 5271–5278 (2008)

    Article  Google Scholar 

  5. Torre, K., Varlet, M., Marmelat, V.: Predicting the biological variability of environmental rhythms: weak or strong anticipation for sensorimotor synchronization? Brain Cogn. 83, 342–350 (2013)

    Article  Google Scholar 

  6. Delignières, D., Marmelat, V.: Strong anticipation and long-range cross-correlation: application of detrended cross-correlation analysis to human behavioral data. Phys. A 394, 47–60 (2014)

    Article  Google Scholar 

  7. Stepp, N., Turvey, M.T.: On strong anticipation. Cogn. Syst. Res. 11, 148–164 (2010)

    Article  Google Scholar 

  8. West, B.J., Geneston, E.L., Grigolini, P.: Maximizing information exchange between complex networks. Phys. Rep. 468, 1–99 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldberger, A.L., Peng, C.K., Lipsitz, L.A.: What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging 23, 23–26 (2002)

    Article  Google Scholar 

  10. Delignières, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., Ninot, G.: Fractal analyses for ‘short’ time series: a re-assessment of classical methods. J. Math. Psychol. 50, 525–544 (2006)

    Article  MATH  Google Scholar 

  11. Holden, J.G.: Gauging the fractal dimension of response times from cognitive tasks. Tutorials in contemporary nonlinear methods for behavioral scientists: A webbook tutorial. Available via www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp (2005). Accessed 20 Nov 2013

  12. Diniz, A., Wijnants, M.L., Torre, K., Barreiros, J., Crato, N., Bosman, A.M., Hasselman, F., Cox, R.F., Van Orden, G.C., Delignières, D.: Contemporary theories of 1/f noise in motor control. Hum. Mov. Sci. 30, 889–905 (2011)

    Article  Google Scholar 

  13. Torre, K., Wagenmakers, E.J.: Theories and models for 1/f\(\beta \) noise in human movement science. Hum. Mov. Sci. 28, 297–318 (2009)

    Article  Google Scholar 

  14. Van Orden, G.C., Kloos, H., Wallot, S.: Living in the pink: intentionality, wellbeing, and complexity. In: Hooker, C. (ed.) Philosophy of Complex Systems: Handbook of the Philosophy of Science, pp. 629–674. Elsevier, Great Britain (2011)

    Chapter  Google Scholar 

  15. Torre, K., Delignières, D.: Unraveling the finding of 1/f \(\beta \) noise in self-paced and synchronized tapping: a unifying mechanistic model. Biol. Cybern. 99, 159–170 (2008)

    Article  MATH  Google Scholar 

  16. Delignières, D., Marmelat, V.: Theoretical and Methodological Issues in Serial Correlation Analysis. In: Richardson, M.J., Riley, M.A., Shockley, K. (eds.) Progress in motor control, pp. 127–148. Springer, New York (2013)

    Chapter  Google Scholar 

  17. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  Google Scholar 

  18. Bauke, H.: Parameter estimation for power-law distributions by maximum likelihood methods. Eur. Phys. J. B 58, 167–173 (2007)

    Article  Google Scholar 

  19. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Conte, E., Khrennikov, A., Zbilut, JP.: New possible properties of atomic nuclei indicat ed by nonlinear methods: fractal and recurrence quantifications analysis. Available via http://www.arxiv.org/abs/0704.0903 (2007). Accessed 20 Nov 2013

  21. Conte, E., Zbilut, J.P.: Evidence of low dimensional chaos in glow curves of thermoluminescence. Available via http://www.arxiv.org/abs/0812.0932 (2008). Accessed 20 Nov 2013

  22. Sarkar, A., Barat, P.: Effect of meditation on scaling behavior and complexity of human heart rate variability. Fractals 16, 199–208 (2008)

    Article  MathSciNet  Google Scholar 

  23. Subha, D.P., Joseph, P.K., Acharya, R., Lim, C.M.: EEG signal analysis: a survey. J. Med. Syst. 34, 195–212 (2010)

    Article  Google Scholar 

  24. Webber, C.L.: Recurrence quantification of fractal structures. Front. Physiol. 3, (2012). doi:10.3389/fphys.2012.00382

  25. Masugi, M.: Applying a recurrence plot scheme to analyze non-stationary transition patterns of IP-network traffic. Commun. Nonlinear Sci. 14, 1418–1430 (2009)

    Article  Google Scholar 

  26. Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A., Moroz, I.M.: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMed. Eng. Online 6, 23–42 (2007)

    Article  Google Scholar 

  27. Naschitz, J.E., Sabo, E., Naschitz, S., Rosner, I., Rozenbaum, M., Priselac, R.M., Gaitini, L., Zukerman, E., Yeshurun, D.: Fractal analysis and recurrence quantification analysis of heart rate and pulse transit time for diagnosing chronic fatigue syndrome. Clin. Auton. Res. 12, 264–272 (2002)

    Article  Google Scholar 

  28. Naschitz, J.E., Itzhak, R., Shaviv, N., Khorshidi, I., Sundick, S., Isseroff, H., Fields, M., Priselac, R.M., Yeshurun, D., Sabo, E.: Assessment of cardiovascular reactivity by fractal and recurrence quantification analysis of heart rate and pulse transit time. J. Hum. Hypertens. 17, 111–118 (2003)

    Article  Google Scholar 

  29. Naschitz, J.E., Michael, R., Fields, M., Enis, S., Manor, H., Dreyfuss, D., Peck, S., Peck, E.R., Babich, J.P., Mintz, E.P., Sabo, E., Slobodin, G., Rozner, I.: Cardiovascular reactivity in fibromyalgia: evidence for pathogenic heterogeneity. J. Rheumatol. 32, 335–339 (2005)

    Google Scholar 

  30. Marwan, N., Kurths, J.: Line structures in recurrence plots. Phys. Lett. A 336, 349–357 (2005)

    Article  MATH  Google Scholar 

  31. Marwan, N.: How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcat. Chaos 21, 1003–1017 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Marwan, N., Romano, C.M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  33. Webber, C.L., Zbilut, J.P.: Recurrence quantification analysis of nonlinear dynamical systems. Tutorials in contemporary nonlinear methods for behavioral scientists: A webbook tutorial. Available via http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp (2005). Accessed 20 Nov 2013

  34. Webber, C.L., Zbilut, J.P.: Recurrence quantifications: feature extractions from recurrence plots. Int. J. Bifurcat. Chaos 17, 3467–3475 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Thanks to Justin Hasselbrock for help with data collection. This research was supported by the National Institutes of Health (R01GM105045). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Coey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Coey, C.A., Washburn, A., Richardson, M.J. (2014). Recurrence Quantification as an Analysis of Temporal Coordination with Complex Signals. In: Marwan, N., Riley, M., Giuliani, A., Webber, Jr., C. (eds) Translational Recurrences. Springer Proceedings in Mathematics & Statistics, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-09531-8_11

Download citation

Publish with us

Policies and ethics