Advertisement

ARACHNIS: Analysis of Robots Actuated by Cables with Handy and Neat Interface Software

  • Ana Lucia Cruz Ruiz
  • Stéphane Caro
  • Philippe Cardou
  • François Guay
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 32)

Abstract

This paper presents ARACHNIS, a graphical user interface for the analysis and parametric design of Cable Driven Parallel Robots (CDPRs). ARACHNIS takes as inputs the design parameters of the robot, the task specifications, and returns a visualisation of the CDPR Wrench Feasible Workspace (WFW) and Interference-Free Constant Orientation Workspace (IFCOW). The WFW is traced from the capacity margin, a measure of the robustness of the equilibrium of the robot. Interferences between the moving parts of a CDPR are also determined by an existing technique for tracing the interference-free workspace of such robots. Finally, the WFW and the IFCOW of a planar cable-driven parallel robot and of a spatial cable-driven parallel robot are plotted in order to demonstrate the potential of ARACHNIS.

Keywords

Workspace Wrench-feasible workspace Interference  Graphical user interface Capacity margin Static equilibrium Cable-driven robot Wire-driven robot 

References

  1. 1.
    Roberts RG, Graham T, Lippitt T (1998) On the inverse kinematics, statics, and fault tolerance of cable-suspended robots. J Robot Syst 15(10):581–597CrossRefzbMATHGoogle Scholar
  2. 2.
    Gosselin C (2014) Cable-driven parallel mechanisms: state of the art and perspectives. J Jpn Soc Mech Eng 1(1):1–17Google Scholar
  3. 3.
    Bouchard S, Gosselin C, Moore B (2010) On the ability of a cable-driven robot to generate a prescribed set of wrenches. ASME J Mech Robot 2(1):011010Google Scholar
  4. 4.
    Gouttefarde M, Daney D, Merlet JP (2011) Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots. IEEE Trans Robot 27(1):1–13CrossRefGoogle Scholar
  5. 5.
    Merlet JP (2004) Analysis of the influence of wires interference on the workspace of wire robots. In: Advances in robot kinematics. Sestri Levante, Italy, pp 211–218Google Scholar
  6. 6.
    Pott A, Meyer C, Verl A (2010) Large-scale assembly of solar power plants with parallel cable robots. In: 41st international symposium on robotics and 6th German conference on robotics. Munich, Germany, pp 999–1004Google Scholar
  7. 7.
    Gouttefarde M, Gosselin C (2006) Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms. IEEE Trans Robot 22(3):434–445. doi: 10.1109/TRO.2006.870638
  8. 8.
    Stump E, Kumar V (2006) Workspaces of cable-actuated parallel manipulators. J Mech Des 128. doi: 10.1115/1.2121741
  9. 9.
    Bosscher P, Riechel AT, Ebert-Uphoff I (2006) Wrench-feasible workspace generation for cable-driven robots. IEEE Trans Robot 22(5):890–902CrossRefGoogle Scholar
  10. 10.
    Azizian K, Cardou P (2013) The dimensional synthesis of spatial cable-driven parallel mechanisms. ASME J Mech Robot 5(4):044502Google Scholar
  11. 11.
    Guay F, Cardou P, Ruiz ALC, Caro S (2013) Measuring how well a structure supports varying external wrenches. In: 2nd conference on mechanisms, transmissions and applications. Bilbao, SpainGoogle Scholar
  12. 12.
    Perreault S, Cardou P, Gosselin C, Otis M (2010) Geometric determination of the interference-free constant-orientation workspace of parallel cable-driven mechanisms. ASME J Mech Robot 2(3):031016Google Scholar
  13. 13.
    Verhoeven R (2004) Analysis of the workspace of tendon-based stewart platforms. Ph.D. thesis, University of Duisburg-EssenGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ana Lucia Cruz Ruiz
    • 1
  • Stéphane Caro
    • 2
  • Philippe Cardou
    • 3
  • François Guay
    • 3
  1. 1.IRCCyNÉcole Centrale de NantesNantesFrance
  2. 2.CNRS–IRCCyNNantesFrance
  3. 3.Laboratoire de robotique, Département de génie mécaniqueUniversité LavalQuebec CityCanada

Personalised recommendations