Skip to main content

The Randomized Dvoretzky’s Theorem in \(l_{\infty }^{n}\) and the χ-Distribution

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2116))

Abstract

Let \(\varepsilon \in (0,1/2)\). We prove that if for some n > 1 and k > 1, a majority of k-dimensional sections of the ball in \(l_{\infty }^{n}\) is \((1+\varepsilon )\)-spherical then necessarily \(k \leq C\varepsilon \ln n/\ln \frac{1} {\varepsilon }\), where C is a universal constant. The bound for k is optimal up to the choice of C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.A. David, Order Statistics, 2nd edn. (Wiley, New York, 1981)

    MATH  Google Scholar 

  2. A. Dvoretzky, Some results on convex bodies and Banach spaces, in Proceedings of the International Symposium on Linear Spaces, Jerusalem (1961), pp. 123–160

    Google Scholar 

  3. W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. (Wiley, New York, 1968)

    Google Scholar 

  4. Y. Gordon, Some inequalities for Gaussian processes and applications. Israel J. Math. 50(4), 265–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Gordon, A.E. Litvak, A. Pajor, N. Tomczak-Jaegermann, Random \(\varepsilon\)-nets and embeddings in \(l_{\infty }^{N}\). Studia Math. 178(1), 91–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. V.D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex bodies. Funct. Anal. Appl. 5(4), 288–295 (1971)

    Article  MathSciNet  Google Scholar 

  7. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986)

    Google Scholar 

  8. G. Pisier, The Volumes of Convex Bodies and Banach Space Geometry (Cambridge University Press, Cambridge, 1989)

    Book  Google Scholar 

  9. G. Schechtman, Two observations regarding embedding subsets of Euclidean spaces in normed spaces. Adv. Math. 200, 125–135 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Schechtman, The random version of Dvoretzky’s theorem in \(l_{\infty }^{n}\), in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1910 (Springer, Berlin, 2007), pp. 265–270

    Google Scholar 

  11. G. Schechtman, Euclidean sections of convex bodies, in Asymptotic Geometric Analysis, ed. by M. Ludwig et al. Fields Institute Communications, vol. 68 (Springer, New York, 2013), 271–288

    Google Scholar 

  12. K.E. Tikhomirov, Almost Euclidean sections in symmetric spaces and concentration of order statistics. J. Funct. Anal. 265, 2074–2088 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. N. Tomczak-Jaegermann for introducing me to this topic and for valuable suggestions on the text. Also, I thank Prof. G. Schechtman for a fruitful conversation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin E. Tikhomirov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tikhomirov, K.E. (2014). The Randomized Dvoretzky’s Theorem in \(l_{\infty }^{n}\) and the χ-Distribution. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116. Springer, Cham. https://doi.org/10.1007/978-3-319-09477-9_31

Download citation

Publish with us

Policies and ethics