Skip to main content

Remarks on Gaussian Noise Stability, Brascamp-Lieb and Slepian Inequalities

  • Chapter
  • First Online:
Book cover Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2116))

Abstract

E. Mossel and J. Neeman recently provided a heat flow monotonicity proof of Borell’s noise stability theorem. In this note, we develop the argument to include in a common framework noise stability, Brascamp-Lieb inequalities (including hypercontractivity), and even a weak form of Slepian inequalities. The scheme applies furthermore to families of measures with are more log-concave than the Gaussian measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Baernstein II, B.A. Taylor, Spherical rearrangements, subharmonic functions and *-functions in n-space. Duke Math. J. 43, 245–268 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Bakry, M. Ledoux, Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123, 259–281 (1996)

    MathSciNet  MATH  Google Scholar 

  3. D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften, vol. 348 (Springer, Berlin, 2014)

    Google Scholar 

  4. K. Ball, Volumes of sections of cubes and related problems, in Geometric Aspects of Functional Analysis (1987–88). Lecture Notes in Mathematics, vol. 1376 (Springer, Berlin, 1989), pp. 251–260

    Google Scholar 

  5. F. Barthe, D. Cordero-Erausquin, Inverse Brascamp-Lieb inequalities along the heat equation, in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1850 (Springer, Berlin, 2004), pp. 65–71

    Google Scholar 

  6. F. Barthe, D. Cordero-Erausquin, B. Maurey, Entropy of spherical marginals and related inequalities. J. Math. Pures Appl. 86, 89–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Barthe, D. Cordero-Erausquin, M. Ledoux, B. Maurey, Correlation and Brascamp-Lieb inequalities for Markov semigroups. Int. Math. Res. Not. 10, 2177–2216 (2011)

    MathSciNet  Google Scholar 

  8. J. Bennett, A. Carbery, M. Christ, T. Tao, The Brascamp-Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17, 1343–1415 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Beckner, Inequalities in Fourier analysis. Ann. Math. 102, 159–182 (1975)

    MathSciNet  MATH  Google Scholar 

  10. W. Beckner, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere \(\mathbb{S}^{n}\). Proc. Natl. Acad. Sci. USA 89, 4816–4819 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bonami, Étude des coefficients de Fourier des fonctions de L p(G). Ann. Inst. Fourier 20, 335–402 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Borell, Geometric bounds on the Ornstein-Uhlenbeck velocity process. Z. Wahrsch. Verw. Gebiete 70, 1–13 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Brascamp, E. Lieb, Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20, 151–173 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Brascamp, E. Lieb, J.M. Luttinger, A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17, 227–237 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Carlen, M. Loss, Extremals of functionals with competing symmetries. J. Funct. Anal. 88, 437–456 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Carlen, E. Lieb, M. Loss, A sharp analog of Young’s inequality on \(S^{N}\) and related entropy inequalities. J. Geom. Anal. 14, 487–520 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. W.-K. Chen, N. Dafnis, G. Paouris, Improved Hölder and reverse Hölder inequalities for correlated Gaussian random vectors (2013)

    Google Scholar 

  18. A. De, E. Mossel, J. Neeman, Majority is Stablest: Discrete and SoS, in Proceedings of the 45th Annual ACM Symposium on Theory of Computing, (2013).

    Google Scholar 

  19. E. De Klerk, D. Pasechnik, J. Warners, On approximate graph colouring and MAX-k-CUT algorithms based on the #-function. J. Comb. Optim. 8, 267–294 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Ehrhard, Symétrisation dans l’espace de Gauss. Math. Scand. 53, 281–301 (1983)

    MathSciNet  MATH  Google Scholar 

  21. X. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, in École d’Été de Probabilités de St-Flour 1974. Lecture Notes in Mathematics, vol. 480 (Springer, Berlin, 1975), pp. 1–96

    Google Scholar 

  22. Y. Gordon, Some inequalities for Gaussian processes and applications. Israel J. Math. 50, 265–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Gross, Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)

    Google Scholar 

  24. Y. Hu, A unified approach to several inequalities for Gaussian and diffusion measures, in Séminaire de Probabilités XXXIV. Lecture Notes in Mathematics, vol. 1729 (Springer, Berlin, 2000), pp. 329–335

    Google Scholar 

  25. M. Isaksson, E. Mossel, New maximally stable Gaussian partitions with discrete applications. Israel J. Math. 189, 347–396 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Ledoux, Isoperimetry and Gaussian analysis, in Ecole d’Été de Probabilités de St-Flour 1994. Lecture Notes in Mathematics, vol. 1648 (Springer, Berlin, 1996), pp. 165–294

    Google Scholar 

  27. E. Lieb, M. Loss, Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  28. E. Mossel, J. Neeman, Robust optimality of Gaussian noise stability. J. Eur. Math Soc. (2012, to appear)

    Google Scholar 

  29. E. Mossel, R. O’Donnell, K. Oleszkiewicz, Noise stability of functions with low influences: invariance and optimality. Ann. Math. 171, 295–341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Neeman, A multidimensional version of noise stability (2014)

    Google Scholar 

  31. E. Nelson, The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MATH  Google Scholar 

  32. R. Plackett, A reduction formula for normal multivariate integrals. Biometrika 41, 351–360 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  33. F. Riesz, Sur une inégalité intégrale. J. Lond. Math. Soc. 5, 162–168 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. A. Rogers, A single integral inequality. J. Lond. Math. Soc. 32, 102–108 (1957)

    Article  MATH  Google Scholar 

  35. W. Sheppard, On the application of the theory of error to cases of normal distribution and normal correlation. Philos. Trans. R. Soc. Lond. 192, 101–168 (1899)

    Article  MATH  Google Scholar 

  36. D. Slepian, The one-sided barrier problem for Gaussian noise. Bell. Syst. Tech. J. 41, 463–501 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This note grew up out of discussions and exchanges with J. Neeman and E. Mossel around their works [28, 30] and [18]. In particular, Sect. 2, the first part of Sects. 3 and 5 are directly following their contributions. I sincerely thank them for their interest and comments. I also thank K. Oleszkiewicz for exchanges on ρ-concave functions, R. Bouyrie for several comments and corrections, F. Barthe for pointing out the reference [17], and the referee for helpful comments in improving the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Ledoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ledoux, M. (2014). Remarks on Gaussian Noise Stability, Brascamp-Lieb and Slepian Inequalities. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116. Springer, Cham. https://doi.org/10.1007/978-3-319-09477-9_20

Download citation

Publish with us

Policies and ethics