An Experimental Eye-Tracking Study for the Design of a Context-Dependent Social Robot Blinking Model

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8608)


Human gaze and blinking behaviours have been recently considered, to empower humanlike robots to convey a realistic behaviour in a social human-robot interaction. This paper reports the findings of our investigation on human eye-blinking behaviour in relation to human gaze behaviour, in a human-human interaction. These findings then can be used to design a humanlike eye-blinking model for a social humanlike robot. In an experimental eye-tracking study, we showed to 11 participants, a 7-minute video of social interactions of two people, and collected their eye-blinking and gaze behaviours with an eye-tracker. Analysing the collected data, we measured information such as participants’ blinking rate, maximum and minimum blinking duration, number of frequent (multiple) blinking, as well as the participants’ gaze directions on environment. The results revealed that participants’ blinking rate in a social interaction are qualitatively correlated to the gaze behaviour, as higher number of gaze shift increased the blinking rate. Based on the findings of this study, we can propose a context-dependent blinking model as an important component of the robot’s gaze control system that can empower our robot to mimic human blinking behaviour in a multiparty social interaction.


blinking model eye-tracking study gaze behaviour humanlike robot social human-robot interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breazeal, C.L.: Designing sociable robots. MIT Press (2004)Google Scholar
  2. 2.
    Breazeal, C.: Social interactions in hri: the robot view. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 34(2), 181–186 (2004)CrossRefGoogle Scholar
  3. 3.
    Lazzeri, N., Mazzei, D., Zaraki, A., De Rossi, D.: Towards a believable social robot. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 393–395. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Zaraki, A., Mazzei, D., Giuliani, M., Rossi, D.D.: Designing and evaluating a social gaze-control system for a humanoid robot. IEEE Transactions on Human-Machine Systems PP(99), 1–12 (2014)Google Scholar
  5. 5.
    Zaraki, A., Mazzei, D., Lazzeri, N., Pieroni, M., De Rossi, D.: Preliminary implementation of context-aware attention system for humanoid robots. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 457–459. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Ponder, E., Kennedy, W.P.: On the act of blinking. Experimental Physiology 18(2), 89–110 (1927)Google Scholar
  7. 7.
    Bentivoglio, A.R., Bressman, S.B., Cassetta, E., Carretta, D., Tonali, P., Albanese, A.: Analysis of blink rate patterns in normal subjects. Movement Disorders 12(6), 1028–1034 (1997)CrossRefGoogle Scholar
  8. 8.
    VanderWerf, F., Brassinga, P., Reits, D., Aramideh, M., de Visser, B.O.: Eyelid movements: behavioral studies of blinking in humans under different stimulus conditions. Journal of Neurophysiology 89(5), 2784–2796 (2003)CrossRefGoogle Scholar
  9. 9.
    Evinger, C., Manning, K.A., Pellegrini, J.J., Basso, M.A., Powers, A.S., Sibony, P.A.: Not looking while leaping: the linkage of blinking and saccadic gaze shifts. Experimental Brain Research 100(2), 337–344 (1994)CrossRefGoogle Scholar
  10. 10.
    Gandhi, N.J.: Interactions between gaze-evoked blinks and gaze shifts in monkeys. Experimental Brain Research 216(3), 321–339 (2012)CrossRefGoogle Scholar
  11. 11.
    Mazzei, D., Lazzeri, N., Hanson, D., De Rossi, D.: Hefes: An hybrid engine for facial expressions synthesis to control human-like androids and avatars. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 195–200. IEEE (2012)Google Scholar
  12. 12.
    Mazzei, D., Lazzeri, N., Billeci, L., Igliozzi, R., Mancini, A., Ahluwalia, A., Muratori, F., De Rossi, D.: Development and evaluation of a social robot platform for therapy in autism. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2011, pp. 4515–4518. IEEE (2011)Google Scholar
  13. 13.
    Mazzei, D., Billeci, L., Armato, A., Lazzeri, N., Cisternino, A., Pioggia, G., Igliozzi, R., Muratori, F., Ahluwalia, A., De Rossi, D.: The face of autism. In: 2010 IEEE RO-MAN, pp. 791–796. IEEE (2010)Google Scholar
  14. 14.
    Haslbeck: The gaze analytic system dikablis, (March 2014)
  15. 15.
    Lausberg, H., Sloetjes, H.: Coding gestural behavior with the neuroges-elan system. Behavior Research Methods 41(3), 841–849 (2009)CrossRefGoogle Scholar
  16. 16.
    Sloetjes, H., Wittenburg, P.: Annotation by category: Elan and iso dcr. In: LREC (2008)Google Scholar
  17. 17.
    Stern, J.A., Boyer, D., Schroeder, D.: Blink rate: a possible measure of fatigue. Human Factors: The Journal of the Human Factors and Ergonomics Society 36(2), 285–297 (1994)Google Scholar
  18. 18.
    Barbato, G., Ficca, G., Muscettola, G., Fichele, M., Beatrice, M., Rinaldi, F.: Diurnal variation in spontaneous eye-blink rate. Psychiatry Research 93(2), 145–151 (2000)CrossRefGoogle Scholar
  19. 19.
    Fogarty, C., Stern, J.A.: Eye movements and blinks: their relationship to higher cognitive processes. International Journal of Psychophysiology 8(1), 35–42 (1989)CrossRefGoogle Scholar
  20. 20.
    Holland, M.K., Tarlow, G.: Blinking and thinking. Perceptual and Motor Skills 41(2), 403–406 (1975)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Research Center “E. Piaggio”, Faculty of EngineeringUniversity of PisaItaly
  2. 2.Perceptual Robotics LaboratoryScuola Superiore Sant’AnnaPisaItaly

Personalised recommendations