I-CLIPS Brain: A Hybrid Cognitive System for Social Robots

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8608)


Sensing and interpreting the interlocutor’s social behaviours is a core challenge in the development of social robots. Social robots require both an innovative sensory apparatus able to perceive the “social and emotional world” in which they act and a cognitive system able to manage this incoming sensory information and plan an organized and pondered response. In order to allow scientists to design cognitive models for this new generation of social machines, it is necessary to develop control architectures that can be easily used also by researchers without technical skills of programming such as psychologists and neuroscientists. In this work an innovative hybrid deliberative/reactive cognitive architecture for controlling a social humanoid robot is presented. Design and implementation of the overall architecture take inspiration from the human nervous system. In particular, the cognitive system is based on the Damasio’s thesis. The architecture has been preliminary tested with the FACE robot. A social behaviour has been modeled to make FACE able to properly follow a human subject during a basic social interaction task and perform facial expressions as a reaction to the social context.


Social robots humanoids cognitive systems artificial intelligence hybrid control architectures expert systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Cohen, Y., Breazeal, C.L.: Biologically inspired intelligent robots, vol. 122. Spie Press (2003)Google Scholar
  2. 2.
    Bosse, T., Jonker, C.M., Treur, J.: Formalisation of damasios theory of emotion, feeling and core consciousness. Consciousness and Cognition 17(1), 94–113 (2008)CrossRefGoogle Scholar
  3. 3.
    Breazeal, C.: Designing Sociable Robots. MIT Press, Cambridge (2002)Google Scholar
  4. 4.
    Breazeal, C.: Emotion and sociable humanoid robots. International Journal of Human-Computer Studies 59(1), 119–155 (2003)CrossRefGoogle Scholar
  5. 5.
    Breazeal, C.: Socially intelligent robots. Interactions 12(2), 19–22 (2005)CrossRefGoogle Scholar
  6. 6.
    Brooks, R.A., Breazeal, C., Marjanovic, M., Scassellati, B., Williamson, M.M.: The cog project: Building a humanoid robot. In: Nehaniv, C.L. (ed.) Computation for Metaphors, Analogy, and Agents. LNCS, vol. 1562, pp. 52–87. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Damasio, A.: Descartes’ Error: Emotion, Reason, and the Human Brain. Grosset/Putnam, Random House, New York (1994, 2008)Google Scholar
  8. 8.
    Damasio, A.: The feeling of what happens (1999)Google Scholar
  9. 9.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42(3-4), 143–166 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Giarratano, J.C., Riley, G.: Expert systems. PWS Publishing Co. (1998)Google Scholar
  11. 11.
    Gibson, J.: The concept of affordances. Perceiving, acting, and knowing, pp. 67–82 (1977)Google Scholar
  12. 12.
    Horton, T.E., Chakraborty, A., St. Amant, R.: Affordances for robots: a brief survey. AVANT. Pismo Awangardy Filozoficzno-Naukowej (2), 70–84 (2012)Google Scholar
  13. 13.
    Lazzeri, N., Mazzei, D., Zaraki, A., De Rossi, D.: Towards a believable social robot. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS (LNAI), vol. 8064, pp. 393–395. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Mazzei, D., Billeci, L., Armato, A., Lazzeri, N., Cisternino, A., Pioggia, G., Igliozzi, R., Muratori, F., Ahluwalia, A., De Rossi, D.: The face of autism. In: The 19th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2010, pp. 791–796. IEEE Computer Society Publisher (2010)Google Scholar
  15. 15.
    Mazzei, D., Lazzeri, N., Hanson, D., De Rossi, D.: Hefes: an hybrid engine for facial expressions synthesis to control human-like androids and avatars. In: 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2012), pp. 195–200. IEEE Computer Society Publisher (2012)Google Scholar
  16. 16.
    Metta, G., Fitzpatrick, P., Natale, L.: Yarp: Yet another robot platform. International Journal of Advanced Robotic Systems 3(1) (2006)Google Scholar
  17. 17.
    Posner, J., Russell, J.A., Peterson, B.S.: The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology Null, 715–734 (September 2005)Google Scholar
  18. 18.
    Qureshi, F., Terzopoulos, D., Gillett, R.: The cognitive controller: a hybrid, deliberative/reactive control architecture for autonomous robots. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 1102–1111. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Russell, J.A.: The circumplex model of affect. Journal of Personality and Social Psychology 39, 1161–1178 (1980)CrossRefGoogle Scholar
  20. 20.
    Zaraki, A., Mazzei, D., Giuliani, M., De Rossi, D.: Designing and evaluating a social gaze-control system for a humanoid robot. IEEE Transactions on Human-Machine Systems PP(99), 1–12 (2014)Google Scholar
  21. 21.
    Zaraki, A., Mazzei, D., Lazzeri, N., Pieroni, M., De Rossi, D.: Preliminary implementation of context-aware attention system for humanoid robots. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS (LNAI), vol. 8064, pp. 457–459. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Research Center “E. Piaggio”Univ. of PisaItaly

Personalised recommendations