Skip to main content

Role of Lysozymes of Anopheles Mosquitoes in Plasmodium Development

  • Chapter
  • First Online:
  • 598 Accesses

Abstract

Lysozymes are important regulators of the immune system in most organisms. These enzymes can show a direct bactericidal activity or upregulate the signaling cascades that result in the production of antimicrobial peptides. In mosquitoes and particularly in the malaria-vector species of the genus Anopheles, lysozymes are present in different tissues and developmental stage expression profiles and are involved in the innate immunity and digestion of bacteria. In An. gambiae, lysozyme C1 protects the oocysts from melanization, thus contributing to an increased prevalence and intensity of Plasmodium berghei infection. The role and importance of lysozymes in the mosquito and in the regulation of oocysts development and the mechanism of action are still unclear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham EG, Nagaraju J, Salunke D et al (1995) Purification and partial characterization of an induced antibacterial protein in the silkworm, Bombyx mori. J Invertebr Pathol 65:17–24

    Article  PubMed  CAS  Google Scholar 

  • Adini A, Warburg A (1999) Interaction of Plasmodium gallinaceum ookinetes and oocysts with extracellular matrix proteins. Parasitology 119:331–336

    Article  PubMed  CAS  Google Scholar 

  • Ahmed AM, Maingon BR, Hurd H (2002) The cost of mounting of an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97:371–377

    Article  Google Scholar 

  • Arrighi RBG, Lycett G, Mahairaki V et al (2005) Laminin and the malaria parasite’s journey through the mosquito midgut. J Exp Biol 208:2497–2502

    Article  PubMed  Google Scholar 

  • Bachali S, Jager M, Hassanin A et al (2002) Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. J Mol Evol 54:652–664

    Article  PubMed  CAS  Google Scholar 

  • Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35:127–160

    Article  PubMed  CAS  Google Scholar 

  • Castillo JC, Robertson AE, Strand MR (2006) Characterization of hemocytes from the mosquito Anopheles gambiae and Aedes aegypti. Insect Biochem Mol Biol 36:891–903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Christensen BM, Li J, Chen CC, Nappi AJ (2005) Melanization immune responses in mosquito vectors. Trends Parasitol 21:192–199

    Article  PubMed  CAS  Google Scholar 

  • Cotter SC, Myatt JP, Benskin CM, Wilson K (2008) Selection for cuticular melanism reveals immune function and life-history trade-offs in Spodoptera littoralis. J Evol Biol 21:1744–1754

    Article  PubMed  CAS  Google Scholar 

  • Daffre S, Kylsten P, Samakovlis C, Hultmark D (1994) The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Mol Gen Genet 242:152–162

    Article  PubMed  CAS  Google Scholar 

  • Dessens JT, Siden-Kiamos I, Mendoza J et al (2003) SOAP, a novel malaria ookinetes protein involved in mosquito midgut invasion and oocyst development. Mol Microbiol 49:319–329

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Aguilar R, Xi Z et al (2006) Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2:e52

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5:e1000423

    Article  PubMed  PubMed Central  Google Scholar 

  • During K, Porsh P, Mahn A (1996) The non-enzymatic microbicidal activity of lysozymes. FEBS Lett 449:93–100

    Article  Google Scholar 

  • Hultmark D (1996) Insect lysozymes. EXS 75:87–102

    PubMed  CAS  Google Scholar 

  • Ibrahim HR, Thomas U, Pellegrini A (2001) A helix–loop–helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem 276:43767–43774

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Yoshikawa A, Hotani T et al (1999) Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. Eur J Biochem 259:456–461

    Article  PubMed  CAS  Google Scholar 

  • Kajla MK, Andreeva O, Gilbreath TM et al (2010) Characterization of expression, activity and role in antibacterial immunity of Anopheles gambiae lysozyme c-1. Comp Biochem Physiol B Biochem Mol Biol 155:201–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajla MK, Shi L, Li B et al (2011) A new role for an old antimicrobial: lysozyme c-1 can function to protect malaria parasites in Anopheles mosquitoes. PLoS One 6:e19649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kang D, Romans P, Lee JY (1996) Analysis of a lysozyme gene from the malaria vector mosquito, Anopheles gambiae. Gene 174:239–244

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Park J-W, Ha N-C et al (2008) Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal. BMB Rep 41:93–101

    Article  PubMed  CAS  Google Scholar 

  • Kylsten P, Kimbrell DA, Daffre S, Samakovlis C, Hultmark D (1992) The lysozyme locus in Drosophila melanogaster: different genes are expressed in gut and salivary glands. Mol Gen Genet 232:335–343

    Article  PubMed  CAS  Google Scholar 

  • Lemos FJA, Ribeiro AF, Terra WR (1993) A bacteria-digesting midgut-lysozyme from Musca domestica (diptera) larvae. Purification, properties and secretory mechanism. Insect Biochem Mol Biol 23:533–541

    Article  CAS  Google Scholar 

  • Li B, Calvo E, Marinotti O et al (2005) Characterization of the c-type lysozyme gene family in Anopheles gambiae. Gene 360:131–139

    Article  PubMed  CAS  Google Scholar 

  • Li B, Paskewitz SM (2006) A role for lysozyme in melanization of Sephadex beads in Anopheles gambiae. J Insect Physiol 52:936–942

    Article  PubMed  CAS  Google Scholar 

  • Mahairaki V, Voyatzi T, Siden-Kiamos I, Louis C (2005) The Anopheles gambiae gamma 1 laminin directly binds the Plasmodium berghei circumsporozoite and TRAP-related protein (CTRP). Mol Biochem Parasitol 140:119–121

    Article  PubMed  CAS  Google Scholar 

  • Mai W, Hu C (2009) cDNA cloning, expression and antibacterial activity of lysozyme C in the blue shrimp (Litopanaeus stylirostris). Prog Nat Sci 19:837–844

    Article  CAS  Google Scholar 

  • Masschalck B, Michiels CW (2003) Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol 29:191–214

    Article  PubMed  CAS  Google Scholar 

  • Moss JM, Van Damme MPI, Murphy WH, Preston BN (1997) Dependence of salt concentration on glycosaminoglycan-lysozyme interactions in cartilage. Arch Biochem Biophys 348:49–55

    Article  PubMed  CAS  Google Scholar 

  • Meis JF, Pool G, van Gemert GJ et al (1989) Plasmodium falciparum ookinetes migrate intercellularly through Anopheles stephensi midgut epithelium. Parasitol Res 76:13–19

    Article  PubMed  CAS  Google Scholar 

  • Moreira-Ferro CK, Marinotti O, Bijovsky AT (1999) Morphological and biochemical analyses of the salivary glands of the malaria vector, Anopheles darlingi. Tissue Cell 31:264–273

    Article  PubMed  CAS  Google Scholar 

  • Nacer A, Walker K, Hurd H (2008) Localisation of laminin within Plasmodium berghei oocysts and the midgut epithelial cells of Anopheles stephensi. Parasit Vectors 1:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakimbugave D, Masschalck B, Atanassova M et al (2006) Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure. Int J Food Microbiol 108:355–363

    Google Scholar 

  • Nilsen IW, Overbo K, Sandsdalen E et al (1999) Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antibacterial activity. FEBS Lett 464:153–158

    Article  PubMed  CAS  Google Scholar 

  • Osta M, Christophides GK, Kafatos FC (2004) Effects of mosquito genes on Plasmodium development. Science 303:2030–2032

    Article  PubMed  CAS  Google Scholar 

  • Park PW, Biedermann K, Mecham L et al (1996) Lysozyme binds to elastin and protects elastin from elastase-mediated degradation. J Invest Dermatol 106:1075–1080

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Kim CH, Kim JH et al (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc Natl Acad Sci U S A 104:6602–6607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paskewitz SM, Li B, Kajla MK (2008) Cloning and molecular characterization of two invertebrate-type lysozymes from Anopheles gambiae. Insect Mol Biol 17:217–225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Povey S, Cotter SC, Simpson SJ et al (2009) Can the protein costs of bacterial resistance be offset by altered feeding behaviour? J Anim Ecol 78:437–446

    Article  PubMed  Google Scholar 

  • Rao X-J, Ling E, Yu X-Q (2010) The role of lysozyme in the prophenoloxidase activation system of Manduca sexta: an in vitro approach. Dev Comp Immunol 34:264–271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reddy JT, Locke M (1990) The size limited penetration of gold particles through insect basal laminae. J Insect Physiol 36:397–408

    Article  CAS  Google Scholar 

  • Rossignol PA, Lueders AM (1986) Bacteriolytic factor in the salivary glands of the Aedes aegypti. Comp Biochem Physiol 83:819–822

    CAS  Google Scholar 

  • Skerrett SJ (2004) Lysozyme in pulmonary host defense. Am J Respir Crit Care Med 169:435–436

    Article  PubMed  Google Scholar 

  • Vlachou D, Lycett G, Siden-Kiamos I et al (2001) Anopheles gambiae laminin interacts with the P25 surface protein of Plasmodium berghei ookinetes. Mol Biochem Parasitol 112:229–237

    Article  PubMed  CAS  Google Scholar 

  • Yu KH, Kim KN, Lee JH et al (2002) Comparative study on characteristics of lysozymes from the hemolymph of three lepidopteran larvae, Galleria mellonella, Bombyx mori, Agrius convolvuli. Dev Comp Immunol 26:707–713

    Article  PubMed  CAS  Google Scholar 

  • Zavalova LL, Baskova IP, Lukyanov SA et al (2000) Destabilase from the medicinal leech is a representative of a novel family of lysozymes. Biochim Biophys Acta 1478:69–77

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clelia Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oliva, C., Facchinelli, L., Basilico, N., Spaccapelo, R. (2015). Role of Lysozymes of Anopheles Mosquitoes in Plasmodium Development. In: Prato, M. (eds) Human and Mosquito Lysozymes. Springer, Cham. https://doi.org/10.1007/978-3-319-09432-8_4

Download citation

Publish with us

Policies and ethics