Sexual Conflict and Evolutionary Psychology: Towards a Unified Framework

  • Tracey ChapmanEmail author
Part of the Evolutionary Psychology book series (EVOLPSYCH)


I review sexual conflict: what it is, why it occurs, how to measure it, and why it matters. My focus is on our current understanding of sexual conflict from the perspective of evolutionary biology, drawing upon studies across diverse species. The aim is also, however, to stimulate discussion at the interface of evolutionary biology and evolutionary psychology. The potential for sexual conflict is pervasive, particularly in outbreeding, nonmonogamous species. It results from divergence between the sexes over how to maximize their fitness. Sexual conflict can occur over a range of different reproductive traits and behaviors, from who to mate with, to how much parental care to give. The intensity of sexual conflict over the level of expression of any reproductive trait value or behavior can be assessed by measuring its costs and benefits, in terms of lifetime fitness, for individuals of each sex. Though as yet an underexplored idea, outcomes of sexual interactions between males and females can be viewed in terms of Hamilton’s famous quartet of social behaviors: mutual benefit (cooperation), selfishness, altruism, and spite. Recent work has focused on the mechanisms used by individuals to assess their social and sexual environment to calibrate their responses to perceived threat levels from sexual competitors. In this respect, there is the potential for much crossover between evolutionary biology and evolutionary psychology to further refine and illuminate common emerging themes.


Sexually antagonistic coevolution Fitness Social behavior Sexual selection Sexual environment Mate choice Seminal fluid proteins 



I thank Todd Shackelford and Ranald Hansen for the invitation to the 2013 Evolution of Sexuality Conference and for the invitation to write this chapter. I thank Andrew Bourke, David Buss and Todd Shackelford for their generous and insightful comments, and Andrew Bourke for troubleshooting EndNote. Finally, I thank the University of East Anglia, the Natural Environment Resources Council, and the Biotechnology and Biological Sciences Research Council for financial support.


  1. Adams, E. M., & Wolfner, M. F. (2007). Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage. Journal of Insect Physiology, 53, 319–331.PubMedPubMedCentralGoogle Scholar
  2. Alexander, R. D., & Noonan, K. M. (1979). Concealment of ovulation, parental care, and human social evolution. In Chagnon, N. & Trions, W.E. (Eds.), Evolutionary biology and human social behavior: An anthropological perspective (pp. 436–453). North Scituate: Duxbury.Google Scholar
  3. Amitin, E.G., & Pitnick, S. (2007). Influence of developmental environment on male- and female-mediated sperm precedence in Drosophila melanogaster. Journal of Evolutionary Biology, 20, 381–392.PubMedGoogle Scholar
  4. Arnqvist, G. (2004). Sexual conflict and sexual selection: Lost in the chase. Evolution, 58, 1383–1388.PubMedGoogle Scholar
  5. Arnqvist, G. (2006). Sensory exploitation and sexual conflict. Philosophical Transactions of the Royal Society B, 361, 227–386.Google Scholar
  6. Arnqvist, G., & Rowe, L. (1995). Sexual conflict and arms races between the sexes: A morphological adaptation for control of mating in a female insect. Proceedings of the Royal Society B, 261, 123–127.Google Scholar
  7. Arnqvist, G., & Rowe, L. (2002a). Antagonistic coevolution between the sexes in a group of insects. Nature, 415, 787–789.Google Scholar
  8. Arnqvist, G., & Rowe, L. (2002b). Correlated evolution of male and female morphologies in water striders. Evolution, 56, 936–947.Google Scholar
  9. Arnqvist, G., & Rowe, L. (2005). Sexual conflict. Princeton: Princeton University Press.Google Scholar
  10. Badcock, C., & Crespi, B. (2008). Battle of the sexes may set the brain. Nature, 454, 1054–1055.PubMedGoogle Scholar
  11. Bateman, A. J. (1948). Intrasexual selection in Drosophila. Heredity, 2, 349–368.PubMedGoogle Scholar
  12. Bell, P. D., & Koufopanou, V. (1986). The cost of reproduction. In Dawkins, R. & Ridley, M. (Eds.), Oxford surveys in evolutionary biology. (Vol. 3, pp. 83–131). Oxford: Oxford University Press.Google Scholar
  13. Benshoof, L., & Thornhill, R. (1979). The evolution of monogamy and loss of estrus in humans. Journal of Society and Biological Structures, 2, 95–106.Google Scholar
  14. Bleske, A. L., & Buss, D. M. (2001). Opposite sex friendship: Sex differences and similarities in initiation, selection and dissolution. Personality and Social Psychology Bulletin, 27, 1310–1323.Google Scholar
  15. Boomsma, J. J. (2007). Kin selection versus sexual selection: Why the ends do not meet. Current Biology, 17, R673–R683.PubMedGoogle Scholar
  16. Boomsma, J. J. (2013). Beyond promiscuity: Mate-choice commitments in social breeding. Philosophilcal Transactions of the Royal Society B, 368, 20120050.Google Scholar
  17. Bourke, A. F. G. (2009). The kin structure of sexual interactions. Biology Letters, 5, 689–692.PubMedPubMedCentralGoogle Scholar
  18. Bourke, A. F. G., & Franks, N. F. (1995). Social evolution in ants. Princeton: Princeton University Press.Google Scholar
  19. Boyd, R., & Richerson, P. J. (2005). The origin and evolution of cultures. Oxford: Oxford University Press.Google Scholar
  20. Boyd, R., Richerson, P. J., & Henrich, J. (2011). Rapid cultural adaptation can facilitate the evolution of large-scale cooperation. Behavioural Ecology and Sociobiology, 65, 431–444.Google Scholar
  21. Bretman, A., Fricke, C., & Chapman, T. (2009). Plastic responses of male D. melanogaster to the level of sperm competition increase male reproductive fitness. Proceedings of the Royal Society B, 276, 1705–1711.PubMedPubMedCentralGoogle Scholar
  22. Bretman, A., Westmancoat, J. D., Gage, M. J. G., & Chapman, T. (2011). Multiple, redundant cues used by males to detect mating rivals. Current Biology, 21, 617–622.PubMedGoogle Scholar
  23. Bretman, A., Westmancoat, J. D., Gage, M. J. G., & Chapman, T. (2012). Individual plastic responses by males to rivals reveal mismatches between behaviour and fitness outcomes. Proceedings of the Royal Society B, 279, 2868–2876.PubMedPubMedCentralGoogle Scholar
  24. Bretman, A., Westmancoat, J. D., & Chapman, T. (2013a). Male control of mating duration following exposure to rivals in fruitflies. Journal of Insect Physiology, 59, 824–827.Google Scholar
  25. Bretman, A., Westmancoat, J. D., Gage, M. J. G., & Chapman, T. (2013b). Costs and benefits of lifetime exposure to mating rivals in male Drosophila melanogaster. Evolution, 67, 2413–2422.Google Scholar
  26. Brommer, J. E., Fricke, C., Edward, D. A., & Chapman, T. (2012). Interactions between genotype and sexual conflict environment influence transgenerational fitness in Drosophila melanogaster. Evolution, 66, 517–531.PubMedGoogle Scholar
  27. Buss, D. M. (1989). Sex differences in human mate preferences: Evolutionary hypothesis testing in 37 cultures. Behavioral and Brain Sciences, 12, 1–49.Google Scholar
  28. Buss, D. M. (2003). The evolution of desire: Strategies of human mating. New York: Basic Books.Google Scholar
  29. Buss, D. M., & Duntley, J.D. (2008). Adaptations for exploitation. Group Dynamics: Theory, Research and Practice, 12, 105–126.Google Scholar
  30. Buss, D. M., & Duntley, J.D. (2011). The evolution of intimate partner violence. Agression and Violent Behavior, 16, 411–419.Google Scholar
  31. Carvahlo, G. B., Kapahi, P., Anderson, D. J, & Benzer, S. (2006). Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Current Biology, 16, 692–696.Google Scholar
  32. Chapman, T. (2001). Seminal fluid-mediated fitness traits in Drosophila. Heredity, 87, 511–521.PubMedGoogle Scholar
  33. Chapman, T. (2006). Evolutionary conflicts of interest between males and females. Current Biology, 16, 744–754.Google Scholar
  34. Chapman, T., Liddle, L.F., Kalb, J.M., Wolfner, M.F., Partridge, L. (1995). Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature, 373, 241–244.PubMedGoogle Scholar
  35. Chapman, T., Herndon, L. A., Heifetz, Y., Partridge, L., & Wolfner, M. F. (2001). The Acp26Aa seminal fluid protein is a modulator of early egg-hatchability in Drosophila melanogaster. Proceedings of the Royal Society B, 268, 1647–1654.PubMedPubMedCentralGoogle Scholar
  36. Chapman, T., Arnqvist, G., Bangham, J., & Rowe, L. (2003a). Sexual conflict. Trends in Ecology and Evolution, 18, 41–47.Google Scholar
  37. Chapman, T., Bangham, J., Vinti, G., Seifried, B., Lung, O., Wolfner, M. F., Smith, H. K., & Partridge, L. (2003b). The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interference. Proceedings of the National Academy of Sciences USA, 100, 9923–9928.Google Scholar
  38. Charlesworth, B. (1980). Evolution in age-structured populations. Cambridge: Cambridge University Press.Google Scholar
  39. Charnov, E. L. (1979). Simultaneous hermaphroditism and sexual selection. Proceedings of the National Academy of Sciences USA, 76, 2480–2484.Google Scholar
  40. Chen, P. S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., & Bohlen, P. (1988). A male accessory gland peptide that regulates reproductive behaviour of female D. melanogaster. Cell, 54, 291–298.PubMedGoogle Scholar
  41. Chippindale, A. K., Gibson, J. R., & Rice, W. R. (2001). Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proceedings of the National Academy of Sciences, USA, 98, 1671–1675.Google Scholar
  42. Civetta, A., & Clark, A. (2000). Correlated effects of sperm competition and postmating female mortality. Proceedings of the National Academy of Sciences USA, 97, 13162–13165.Google Scholar
  43. Civetta, A., & Singh, R.S. (1999). Broad-sense sexual selection, sex gene pool evolution, and speciation. Genome, 42, 1033–1041.PubMedGoogle Scholar
  44. Clark, N. L., Gasper, J., Sekino, M., Springer, S. A., Aquadro, C. F., & Swanson, W. J. (2009). Coevolution of interacting fertilization proteins. PLoS Genetics, 5, e1000570.PubMedPubMedCentralGoogle Scholar
  45. Clutton-Brock, T. H. (2007). Sexual selection in males and females. Science, 318, 1882–1885PubMedGoogle Scholar
  46. Cognigni, P., Bailey, A. P., & Miguel-Aliaga, I. (2011). Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metabolism, 13, 92–104.PubMedPubMedCentralGoogle Scholar
  47. Cordts, R., & Partridge, L. (1996). Courtship reduces longevity of male Drosophila melanogaster. Animal Behaviour, 52, 269–278.Google Scholar
  48. Davies, N. B. (1992). Dunnock behaviour and social evolution. Oxford: Oxford University Press.Google Scholar
  49. Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
  50. Dewsbury, D. A. (1982). Ejaculate cost and male choice. American Naturalist, 119, 601–610.Google Scholar
  51. Domanitskaya, E. V., Liu, H., Chen, S., & Kubli, E. (2007). The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. FEBS Journal, 274, 5659–5668.PubMedGoogle Scholar
  52. Edward, D. A., & Chapman, T. (2011). Evolutionary significance of male mate choice. Trends in Ecology and Evolution, 12, 647–654.Google Scholar
  53. Edward, D. A., Fricke, C., Gerrard, D. T., & Chapman, T. (2011). Quantifying the life history response to increased male exposure in female. Drosophila melanogaster. Evolution, 65,  564–573.Google Scholar
  54. Ellegren, H., & Parsch, J. (2007). The evolution of sex-biased genes and sex-biased gene expression. Nature Reviews Genetics, 8, 689–698.PubMedGoogle Scholar
  55. Fedorka, K. M., Winterhalter, W. E., & Ware, B. (2011). Perceived sperm competition intensity influences seminal fluid protein production prior to courtship and mating. Evolution, 65, 584–590.PubMedGoogle Scholar
  56. Fehr, E., & Gächter, S. (2002). The nature of human altruism. Nature, 415, 137–140.PubMedGoogle Scholar
  57. Feldman, M. W., Cavalli-Sforza, L. L., & Peck, J. R. (1985). Gene-culture coevolution: Models for the evolution of altruism with cultural transmission. Proceedings of the National Academy of Sciences USA, 82, 5814–5818.Google Scholar
  58. Fisher, R. A. (1930). The genetical theory of natural selection. New York: Dover.Google Scholar
  59. Foerster, K., Coulson, T., Sheldon, B. C., Pemberton, J. M., Clutton-Brock, T. H., & Kruuk, L. E. B. (2007). Sexually antagonistic genetic variation for fitnes in red deer. Nature, 447, 1107–1111.PubMedGoogle Scholar
  60. Fowler, K., Partridge, L. (1989). A cost of mating in female fruitflies. Nature, 338, 760–761.Google Scholar
  61. Frank, S. A. (2000). Sperm competition and female avoidance of polyspermy mediated by sperm-egg biochemistry. Evolutionary Ecology Research, 2, 613–625.Google Scholar
  62. Frank, S. A. (2003). Repression of competition and the evolution of cooperation. Evolution, 57, 693–705.PubMedGoogle Scholar
  63. Friberg, U. (2006). Male perception of female mating status: Its effect on copulation duration, sperm defence and female fitness. Animal Behaviour, 72, 1259–1268.Google Scholar
  64. Fricke, C., Bretman, A., & Chapman, T. (2008). Adult male nutrition and reproductive success in Drosophila melanogaster A reproductive strategy adopted by one sex that is costly to both. Predicted under conditions under which there is negative relat-edness, where individuals are less genetically similar at a given locus than are partners on av-erageEvolution, 62, 3170–3177.PubMedGoogle Scholar
  65. Fricke, C., Bretman, A. & Chapman, T. (2009a). Female nutritional status determines the magnitude and sign of responses to a male ejaculate signal in Drosophila melanogaster. Journal of Evolutionary Biology, 23, 157–165.Google Scholar
  66. Fricke, C., Perry, J., Chapman, T., & Rowe, L. (2009b). Conditional economics of sexual conflict. Biology Letters, 5, 671–674.Google Scholar
  67. Fricke, C., Wigby, S., Hobbs, R., & Chapman, T. (2009c). The benefits of male ejaculate sex peptide transfer in Drosophila melanogaster. Journal of Evolutionary Biology, 22, 275–286.Google Scholar
  68. Fromhage, L., & Schneider, J. M. (2005). Safer sex with feeding females: Sexual conflict in a cannibalistic spider. Behavioural Ecology, 16, 377–382.Google Scholar
  69. Giles, H., & Powesland, P. F. (1975). Speech style and social evaluation. Oxford: Academic.Google Scholar
  70. Gioti, A., Wigby, S., Wertheim, B., Schuster, E., Martinez, P., Pennington, C.J., et al. (2012). Sex peptide of D. melanogaster males is a global regulator of reproductive processes in females. Proceedings of the Royal Society B, 279, 4423–4432.PubMedPubMedCentralGoogle Scholar
  71. Goetz, C. D., Easton, J. A., Lewis, D. M. G., & Buss, D. M. (2012). Sexual exploitability: Observable cues and their link to sexual attraction. Evolution and Human Behavior, 33, 417–426.Google Scholar
  72. Haig, D. (1993). Genetic conflicts in human pregnancy. Quarterly Review of Biology, 68, 495–531.PubMedGoogle Scholar
  73. Haig, D. (1996). Gestational drive and the green-bearded placenta. Proceedings of the National Academy of Sciences USA, 93, 6547–6551.Google Scholar
  74. Haig, D. (1997). Parental antagonism, relatedness asymmetries, and genomic imprinting. Proceedings of the Royal Society B, 264, 1657–1662.PubMedPubMedCentralGoogle Scholar
  75. Haig, D., & Graham, C. (1991). Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell, 64, 1045–1046.PubMedGoogle Scholar
  76. Haig, D., & Wilczek, A. (2006). Sexual conflict and the alternation of haploid and diploid generations. Philosophical Transactions of the Royal Society B, 361, 227–386.Google Scholar
  77. Hamilton, W. D. (1964). The genetical evolution of social behaviour I, II. Journal of Theoretical Biology, 7, 1–52.PubMedGoogle Scholar
  78. Hayashi, T. I., Vose, M., Gavrilets, S. (2007). Genetic differentiation by sexual conflict. Evolution, 61, 516–529.PubMedGoogle Scholar
  79. Helle, S., Lummaa, V., & Jokela, J. (2002). Sons reduced maternal longevity in preindustrial humans. Science, 296, 1085.PubMedGoogle Scholar
  80. Henrich, J. (2004). Cultural groups selection, coevolutioary processes and large-scale cooperation. Journal of Economic Behaviour and Organization, 53, 3–35.Google Scholar
  81. Hill, K. R., & Hurtado, A. M. (1996). Ache life history: The ecology and demography of a foraging people. Hawthorne: Walter de Gruyter Inc.Google Scholar
  82. Hodgson, D. J., & Hosken, D. J. (2006). Sperm competition promotes the exploitation of rival ejaculates. Journal of Theoretical Biology, 243, 230–234.PubMedGoogle Scholar
  83. Holland, B., & Rice, W. (1998). Chase-away sexual selection: Antagonistic seduction versus resistance. Evolution, 52, 1–7.Google Scholar
  84. Holland, B., & Rice, W. R. (1999). Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proceedings of the National Academy of Sciences USA, 96, 5083–5088.Google Scholar
  85. Hrdy, S. B. (1979). Infanticide among animals—review, classification, and examination of the implications for the reproductive strategies of females. Ethology and Sociobiology, 1, 13–40.Google Scholar
  86. Hurst, L. D., & McVean, G. T. (1997). Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends in Genetics, 13, 436–443.PubMedGoogle Scholar
  87. Imhof, M., Harr, B., Brem, G., & Schlotterer, C. (1998). Multiple mating in wild Drosophila melanogaster revisited by microsatellite analysis. Molecular Ecology, 7, 915–917.PubMedGoogle Scholar
  88. Isaac, R. E., Li. C., Leedale, A. E., & Shirras, A. D. (2009). Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proceedings of the Royal Society B, 277, 65–70.PubMedPubMedCentralGoogle Scholar
  89. Johnstone, R. A., & Keller, L. (2000). How males can gain by harming their males: Sexual conflict, seminal toxins and the cost of mating. American Naturalist, 156, 368–377.Google Scholar
  90. Kiers, E. T., Rousseau, R. A., West, S. A., & Denison, R. F. (2003). Host sanctions and the legume-rhizobium mutualism. Nature, 425, 78–81.PubMedGoogle Scholar
  91. Krebs, J.R., Davies, N.B. (1987). Sexual conflict and sexual selection. In An Introduction to behavioural ecology (2nd ed, pp. 161–190). Sunderland: Sinhauer Asociates.Google Scholar
  92. Kubli, E. (2003). Sex peptides: Seminal peptides of the Drosophila male. Cellular and Molecular Life Sciences, 60, 1689–1704.PubMedGoogle Scholar
  93. Kuukasjärvi, S., Eriksson, C. J. P., Koskela, E., Mappes, T., Nissinen, K., & Rantala, M. J. (2004). Attractiveness of women’s body odors over the menstrual cycle: The role of oral contraceptives and receiver sex. Behavioural Ecology, 15, 579–584.Google Scholar
  94. Lawniczak, M. K. N., Barnes, A. I., Linklater, J. R., Boone, J. M., Wigby, S., & Chapman, T. (2007). Mating and immunity in invertebrates. Trends in Ecology and Evolution, 22, 48–55.PubMedGoogle Scholar
  95. Lee, Y.-H., Tatsuya, O., & Vacquier, V. D. (1995). Positive selection is a general phenomena in the evolution of abalone sperm lysis. Molecular Biology and Evolution, 12, 231–238.PubMedGoogle Scholar
  96. Lehmann, L., Feldman, M. W., & Foster, K. R. (2008). Cultural transmission can inhibit the evolution of altruistic helping. American Natualist, 172, 12–24.Google Scholar
  97. Lessells, C. M. (2005). Why are males bad for females? Models for the evolution of damaging male mating behaviour. American Naturalist, 165, S46–S63.PubMedGoogle Scholar
  98. Lew, T. A., Morrow, E. H., & Rice, W. R. (2006). Standing genetic variance for female resistance to harm from males and its relationship to intralocus sexual conflict. Evolution, 60, 97–105.PubMedGoogle Scholar
  99. Liu, H., & Kubli, E. (2003). Sex peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA, 100, 9929–9933.Google Scholar
  100. Long, T. A. F., & Rice, W. R. (2007). Adult locomotory activity mediates intralocus sexual conflict in a laboratory-adapted population of Drosophila melanogaster. Proceedings of the Royal Society B, 274, 3105–3112.PubMedPubMedCentralGoogle Scholar
  101. Martin, O. Y., & Hosken, D. J. (2003). The evolution of reproductive isolation through sexual conflict. Nature, 423, 979–982.PubMedGoogle Scholar
  102. McGraw, L. A., Fiumera, A. C., Ramakrishnan, M., Madhavarapu, S., Clark, A. G., & Wolfner, M. F. (2007). Larval rearing environment affects several post-copulatory traits in Drosophila melanogaster. Biology Letters, 3, 607–610.PubMedPubMedCentralGoogle Scholar
  103. Metz, E. C., & Palumbi, S. R. (1996). Positive selection for sequence rearrangements generates extensive sequence polymorphism in the gamete recognition protein bindin. Molecular Biology and Evolution, 13, 391–406.Google Scholar
  104. Morrow, E. H., Arnqvist, G., & Pitnick, S. (2003). Adaptation versus pleiotropy: Why do males harm their mates? Behavioural Ecology, 14, 802–806.Google Scholar
  105. Mueller, J. L., Ripoll, D. R., Aquadro, C. F., Wolfner, M. F. (2004). Comparative structural modeling and inference of conserved protein classes in Drosophila seminal fluid Proceedings of the National Academy of Sciences USA, 101, 13542–13547.Google Scholar
  106. Mueller, J. L., Ram, K. R., McGraw, L. A., Qazi, M. C. B., Siggia, E. D., Clark, A. G., Aquadro, C. F., & Wolfner, M. F. (2005). Cross-species comparison of Drosophila male accessory gland protein genes. Genetics, 171, 131–143.PubMedPubMedCentralGoogle Scholar
  107. Mueller, J. L., Page, J. L., & Wolfner, M. F. (2007). An ectopic expression screen reveals the protective and toxic effects of Drosophila seminal fluid proteins Genetics, 175, 777–783.PubMedPubMedCentralGoogle Scholar
  108. Mulder, R. A., Langmore, N. E. (1993). Dominant males punish helpers for temporary defection in superb fairly wrens. Animal Behaviour, 45, 830–833.Google Scholar
  109. Neubaum, D. M., Wolfner, M. F. (1999). Wise, winsome, or weird? Mechanisms of sperm storage in female animals. Current Topics in Developmental Biology, 41, 67–97.PubMedGoogle Scholar
  110. Parisi, M., Nuttall, R., Edwards, P., Minor, J., Naiman, D., Lu, J. N., Lu, J. N., Doctolero, M., Vainer, M., Chan, C., Malley, J., Eastman, S., & Oliver, B. (2004). A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults. Genome Biology, 5, R40.PubMedPubMedCentralGoogle Scholar
  111. Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. Biological Reviews, 45, 525–567.Google Scholar
  112. Parker, G. A. (1979). Sexual selection and sexual conflict. New York: Academic.Google Scholar
  113. Parker, G. A. (2006). Sexual conflict over mating and fertilisation: An overview. Philosophical Transactions of the Royal Society B, 361, 235–260.Google Scholar
  114. Parker, G. A., & Partridge, L. (1998). Sexual conflict and speciation. Philosophical Transactions of the Royal Society B, 353, 261–274.Google Scholar
  115. Partridge, L., & Andrews, R. (1985). The effect of reproductive activity on the longevity of male Drosophila melanogaster is not caused by an acceleration of ageing. Journal of Insect Physiology, 31, 393–395.Google Scholar
  116. Partridge, L., & Harvey, P. H. (1988). The ecological context of life history evolution. Science, 241, 1449–1454.PubMedGoogle Scholar
  117. Partridge, L., & Hurst, L. D. (1998). Sex and conflict. Science, 281, 2003–2008.PubMedGoogle Scholar
  118. Paterson, S., Vogwill, T., Buckling, A., Benmayor, R., Spiers, A. J., Thomson, N.R., Quail, M., Smith, F., Walker, D., Libberton, B., Fenton, A., Hall, N., & Brockhurst, M. A. (2010). Antagonistic coevolution accelerates molecular evolution. Nature, 464, 275–278.PubMedPubMedCentralGoogle Scholar
  119. Peng, J., Zipperlen, P., & Kubli, E. (2005). Drosophila sex peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Current Biology, 15, 1690–1694.PubMedGoogle Scholar
  120. Priest, N. K., Galloway, L. F., Roach, D. A. (2008). Mating frequency and inclusive fitness in Drosophila melanogaster. American Naturalist, 171, 10–21.PubMedGoogle Scholar
  121. Ram, K. R., Wolfner, M. F. (2007). Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integrative and Comparative Biology, 47, 427–445.Google Scholar
  122. Rankin, D. J. (2011). Kin selection and the evolution of sexual conflict. Journal of Evolutionary Biology, 24, 71–81.PubMedGoogle Scholar
  123. Ratnieks, F. L. W., & Reeve, H. K. (1992). Conflict in single-queen Hymenopteran societies: The structure of conflict and processes that reduce conflict in advanced eusocial societies. Journal of Theoretical Biology, 158, 33–65.Google Scholar
  124. Ratnieks, F. L. W., Foster, K. R., Wenseleers, T. (2006). Conflict resolution in insect societies. Annual Review of Entomology, 51, 581–608.PubMedGoogle Scholar
  125. Reinhardt, K., Naylor, R., Siva-Jothy, M. T. (2003). Reducing a cost of traumatic insemination: Female bedbugs evolve a unique organ. Proceedings of the Royal Society B, 270, 2371–2375.PubMedPubMedCentralGoogle Scholar
  126. Ribeiro, C., Dickson, B. J. (2010). Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Current Biology, 20, 1000–1005.PubMedGoogle Scholar
  127. Rice, W. R. (1992). Sexually antagonistic genes—experimental-evidence. Science, 256, 1436–1439.PubMedGoogle Scholar
  128. Rice, W. R. (1996). Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature, 381, 232–234.PubMedGoogle Scholar
  129. Rice, W. R. (1998). Intergenomic conflict, interlocus antagonistic coevolution and the evolution of reproductive isolation. In Howard, D.J. & Berlocher, S.H. (Eds.), Endless forms—species and speciation (pp. 261–270). Oxford: Oxford University Press.Google Scholar
  130. Robertson, S. A. (2005). Seminal plasma and male factor signalling in the female reproductive tract. Cell and Tissue Research, 322, 43–52.PubMedGoogle Scholar
  131. Rönn, J., Katvala, M., & Arnqvist, G. (2007). Coevolution between harmful male genitalia and female resistance in seed beetles. Proceedings of the National Academy of Sciences USA, 104, 10921–10925.Google Scholar
  132. Rowe, L., & Day, T. (2006). Detecting sexual conflict and sexually antagonistic coevolution. Philosophical Transactions of The Royal Society B, 361, 277–285.Google Scholar
  133. Rowe, L., & Houle, D. (1996). The lek paradox and the capture of genetic variance by condition dependent traits. Proceedings of the Royal Society B, 263, 1415–1421.Google Scholar
  134. Schneider, J. M., Gilberg, S., Fromhage, L., & Uhl, G. (2006). Sexual conflict over copulation duration in a cannibalistic spider. Animal Behaviour, 71, 781–788.Google Scholar
  135. Schrempf, A., Heinze, J., & Cremer, S. (2005). Sexual cooperation: Mating increases longevity in ant queens. Current Biology, 15, 267–270.PubMedGoogle Scholar
  136. Shackelford, T. K., Buss, D. M., Weeks-Shackelford, V. (2003). Wife-killings committed in the context of a lovers triangle. Journal of Basic and Applied Social Psychology, 25, 137–143.Google Scholar
  137. Sharkey, D. J., Tremellen, K. P., Jasper, M. J., Gemzell-Danielsson, K., Robertson, S. A. (2012). Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus. Journal of Immunology, 188, 2445–2454.Google Scholar
  138. Short, S. M., Wolfner, M. F., Lazzaro, B. P. (2012). Female Drosophila melanogaster suffer reduced defense against infection due to seminal fluid components. Journal of Insect Physiology, 58, 1192–1201.PubMedPubMedCentralGoogle Scholar
  139. Sirot, L. K., Wolfner, M. F., Wigby, S. (2011). Protein-specific manipulation of ejaculate composition in response to female mating status in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA, 24, 9922–9926.Google Scholar
  140. Sirot, L. K., Wong, A., Chapman, T., Wolfner, M. F. (2014). Sexual conflict and seminal fluid proteins: A dynamic landscape of sexual interactions. In Rice, W.R. & Gavrilets, S. (Eds.), Sexual conflict. Cold Spring Harbor: CSHL (in press).Google Scholar
  141. Stearns, S. C. (1992). The evolution of life histories. Oxford: Oxford University Press.Google Scholar
  142. Stibor, H. (1992). Predator induced life-history shifts in a freshwater cladoceran. Oecologia, 92, 162–165.Google Scholar
  143. Strassmann, B. I. (1981). Sexual selection, paternal care, and concealed ovulation in humans. Ethology and Sociobiology, 2, 31–40.Google Scholar
  144. Summers, K., & Crespi, B. (2008). The androgen receptor and prostate cancer: A role for sexual selection and sexual conflict? Medical Hypotheses, 70, 435–443.PubMedGoogle Scholar
  145. Swanson, W. J., Aquadro, C. F., & Vacquier, V. D. (2001a). Polymorphism in abalone fertilisation proteins is consistent with neutral evolution of the egg’s receptor for lysin (VERL) and positive Darwinian selection of sperm lysin. Molecular Biology and Evolution, 18, 376–383.Google Scholar
  146. Swanson, W. J., Yang, Z., Wolfner, M. F., Aquadro, C. F. (2001b). Positive Darwinian selection drives the evolution of several reproductive proteins in mammals. Proceedings of the National Academy of Sciences USA, 98, 2509–2514.Google Scholar
  147. Tanha, M., Beck, C. J. A., Figueredo, A. J., & Raghavan, C. (2010). Sex differences in intimate partners violence and the use of coercive control as a motivational factor for intimate partner violence. Journal of Interpersonal Violence, 25, 1836–1854.PubMedGoogle Scholar
  148. Thornhill, R., & Alcock, J. (1983). The evolution of insect mating systems. Cambridge: Harvard University Press.Google Scholar
  149. Thornhill, R., & Gangestad, S.W. (1999). The scent of symmetry: A human sex pheromone that signals fitness? Evolution and Human Behaviour, 20, 175–201.Google Scholar
  150. Trivers, R. L. (1971). The evolution of reciprocal altruism. Quarterly Review of Biology, 46, 35–57.Google Scholar
  151. Trivers, R.L. (1972). Parental in investment and sexual selection. In Campbell, B. (Ed) Sexual selection and the descent of man. (pp. 136–179). London: Heinemann.Google Scholar
  152. Úbeda, F., & Wilkins, J. F. (2008). Imprinted genes and human disease: An evolutionary perspective. Advances in Experimental Medicine and Biology, 626, 101–115.PubMedGoogle Scholar
  153. VanderLaan, D. P., Forrester, D. L., Petterson, L. J., Vasey, P. L. (2012). Offspring production among the extended relatives of samoan men and Fa’afafine. PLoS One, 7, e36088.PubMedPubMedCentralGoogle Scholar
  154. Vasey, P. L., Pocock, D. S., VanderLaan, D. P. (2007). Kin selection and male androphilia in Samoan fa’afaine. Evolution and Human Behaviour, 28, 159–167.Google Scholar
  155. Vasey, P. L., & VanderLaan, D. P. (2010). Avuncular tendencies and the evolution of male androphilia in Samoan fa’afaine. Archives of Sexual Behavior, 39, 821–830.PubMedGoogle Scholar
  156. Wagstaff, B. J., & Begun, D. J. (2005a). Comparative genomics of accessory gland protein genes in Drosophila melanogaster and D. pseudoobscura. Molecular Biology and Evolution, 22, 818–832.Google Scholar
  157. Wagstaff, B. J., & Begun, D. J. (2005b). Molecular population genetics of accessory gland protein genes and testis-expressed genes in Drosophila mojavensis and D. arizonae. Genetics, 171, 1083–1101.Google Scholar
  158. Waynforth, D. (2012). Life-history theory, chronic childhood illness and the timing of first reproduction in a British birth cohort. Proceedings of the Royal Society B, 279, 2998–3002.PubMedPubMedCentralGoogle Scholar
  159. West, S. A., Griffin, A. S., & Gardner, A. (2007a). Evolutionary explanations for cooperation. Current Biology, 17, R661–R672.Google Scholar
  160. West, S. A., Griffin, A. S., & Gardner, A. (2007b). Social semantics: Altruism, cooperation, mutualism, strong reciprocity and group selection. Journal of Evolutionary Biology, 20, 415–432.Google Scholar
  161. West, S. A., El Mouden, C., & Gardner, A. (2011). Sixteen misconceptions about the evolution of cooperation in humans. Evolution and Human Behaviour, 32, 231–262.Google Scholar
  162. West-Eberhard, M. J. (1979). Sexual selection, social competition, and evolution. Proceedings of the American Philosophy Society, 123, 222–234.Google Scholar
  163. Westendorp, R., & Kirkwood, T. (1998). Human longevity at the cost of reproductive success. Nature, 396, 743–746.PubMedGoogle Scholar
  164. Wigby, S., & Chapman, T. (2004). Female resistance to male harm evolves in response to manipulation of sexual conflict. Evolution, 58, 1028–1037.PubMedGoogle Scholar
  165. Wigby, S., & Chapman, T. (2005). Sex peptide causes mating costs in female Drosophila melanogaster. Current Biology, 15, 316–321.PubMedGoogle Scholar
  166. Wigby, S., Sirot, L. K., Linklater, J. R., Buehner, N., Calboli, F. C. F., Bretman, A., Wolfner, M. F., & Chapman, T. (2009). Seminal fluid protein allocation and male reproductive success. Current Biology, 19, 1–7.Google Scholar
  167. Williams, G. C. (1966a). Adaptation and natural selection. Princeton: Princeton University Press.Google Scholar
  168. Williams, G. C. (1966b). Natural selection, the costs of reproduction and a refinement of Lack’s principle. American Naturalist, 100, 687–690.Google Scholar
  169. Wilson, M., & Daly, M. (1997). Life expectancy, economic inequality, homicide, and reproductive timing in Chicago neighbourhoods. British Medical Journal, 314, 1271.PubMedPubMedCentralGoogle Scholar
  170. Wolfner, M. F. (2002). The gifts that keep on giving: Physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity, 88, 85–93.PubMedGoogle Scholar
  171. Wong, A. (2010). Testing the effects of mating system variation on rates of molecular evolution in primates. Evolution, 64, 2779–2785.PubMedGoogle Scholar
  172. Wong, A. (2011). The molecular evolution of animal reproductive tract proteins: What have we learned from mating-system comparisons? International Journal of Evolutionary Biology, 2011, 2011.Google Scholar
  173. Wong, A., Turchin, M. C., Wolfner, M. F., & Aquadro, C. F. (2008). Evidence for positive selection on Drosophila melanogaster seminal fluid protease homologs. Moleulcar Biology and Evolution, 25, 497–506.Google Scholar
  174. Wyckoff, G. J., Wu, C. I. (1997). Sexual selection at the molecular level:evolutionary analysis of two sperm associated proteins in primates. American Journal of Human Genetics, 61, A215.Google Scholar
  175. Yapici, N., Kim, Y.-J., Ribeiro, C., & Dickson, B. J. (2008). A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature, 451, 33–37.PubMedGoogle Scholar
  176. Young, A. J., Carlson, A. A., Monfort, S. L., Russell, A. F., Bennett, N. C., & Clutton-Brock, T. H. (2006). Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proceedings of the National Academy of Sciences USA, 103, 12005–12010.Google Scholar
  177. Zhong, W., McClure, C. D., Evans, C. R., Mlynski, D. T., Immonen, E., Ritchie, M. G., & Priest, N. K. (2013). Immune anticipation of mating in Drosophila: Turandot M promotes immunity against sexually transmitted fungal infections. Proceedings of the Royal Society B, 280, 2013–2018.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of East AngliaNorwichUK

Personalised recommendations