Skip to main content

Biotechnology Tools for Conservation of the Biodiversity of European and Mediterranean Abies Species

  • Chapter
  • First Online:
Book cover Biotechnology and Biodiversity

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 4))

Abstract

The review underlines the importance of European and Mediterranean firs (Abies sp.) in European forests, their geographical distribution, ecological and economical values. The present status of endangerment is given as well as the importance of genetic conservation of these species is illustrated by results from population genetics studies. Moreover, the current status of in situ and ex situ conservation methods is discussed and a special attention is paid to the role of biotechnological methods (in vitro regeneration system and cryopreservation) in their ex situ conservation. Among in vitro methods till now, only somatic embryogenesis proved to be promising and five species (A. alba, A. cephalonica, A. cilicica, A. nordmanniana, A. numidica and several hybrids) were regenerated. Based on the success of regeneration method, the slow cooling cryopreservation protocols for three Abies species (A. alba, A. cephalonica, A. nordmanianna) and their hybrids were developed. The biotechnology approaches have confirmed their place in the toolbox of conservation methods of firs. Transfer of the experience gained in widespread species and development of reliable procedures for somatic embryogenesis and cryopreservation for the endemics remain tasks for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja MR (1986) Storage of forest tree germplasm in liquid nitrogen (– 196 °C). Silvae Genet 35:249–251

    Google Scholar 

  • Alizoti PG, Fady B, Prada MA, Vendramin GG (2011) EUFORGEN technical guidelines for genetic conservation and use of Mediterranean firs (Abies spp.). Bioversity International, Rome, p 6

    Google Scholar 

  • Arista M (1995) The structure and dynamics of an Abies pinsapo forest in southern Spain. Forest Ecol Manag 74:81–89

    Google Scholar 

  • Aronen TS, Krajňáková J, Häggman HM, Ryynanen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172

    CAS  Google Scholar 

  • Awad L, Fady B, Khater C, Roig A, Cheddadi R (2014) Genetic structure and diversity of the endangered fir tree of Lebanon (Abies cilicica Carr.): Implications for conservation. Plos One 9:e90086

    CAS  Google Scholar 

  • Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory practice. Crit Rev Plant Sci 27:141–219

    CAS  Google Scholar 

  • Bergmann F, Gregorius HR (1993) Ecogeographical distribution and thermostability of isocitrate dehydrogenase (Idh) alloenzymes in European silver fir (Abies alba). Biochem Syst Ecol 21(5):597–605

    CAS  Google Scholar 

  • Bettinger P, Clutter M, Siry J, Kane M, Pait J (2009) Broad implications of southern United States pine clonal forestry on planning and management of forests. Int Forest Rev 11:331–345

    Google Scholar 

  • Blakesley D, Pask N, Henshaw GG, Fay MF (1996) Biotechnology and the conservation of forest genetic resources: in vitro strategies and cryopreservation. Plant Growth Regul 20:11–16

    CAS  Google Scholar 

  • Blazich FA, Hinesley LE (1994) Propagation of Fraser fir. J Environ Horticult 12:112–117

    Google Scholar 

  • Bomal C, Tremblay FM (2000) Dried cryopreserved somatic embryos of two picea species provide suitable material for direct plantlet regeneration and germplasm storage. Ann Bot 86:177–183

    Google Scholar 

  • Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult 100:241–254

    Google Scholar 

  • Bonner FT (2008) Storage of seeds. The woody plant seed material. Agriculture handbook 727. USDA, Forest Service, Washington, DC, pp 85–96

    Google Scholar 

  • Bošeľa M, Petráš R, Sitková Z, Priwitzer T, Pajtík J, Hlavata H, Sedmák R, Tobin B (2014) Possible causes of the recent rapid increase in the radial increment of silver fir in the Western Carpathians. Environ Pollut 184:211–221

    PubMed  Google Scholar 

  • Chalupa V (1991) Somatic embryogenesis and plant regeneration in European silver fir (Abies alba Mill.) and red oak (Quercus rubra L.). Commun Inst For 17:51–58

    Google Scholar 

  • Chmielarz P (2008) Kriogeniczne przechowywanie nasion jodły pospolitej (Abies alba Mill.). Cryopreservation of Abies alba Mill. seeds. In: Barzdajn W, Raj A (eds) Jodła pospolita w Karkonoskim Parku Narodowym. Karkonoski Park Narodowy, Jelenia Góra, pp 149–154

    Google Scholar 

  • Convention on Biological Diversity (2010) Plants 2020: supporting the implementation of the Global Strategy for Plant Conservation. http://www.plants2020.net/about-the-gspc/

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Google Scholar 

  • Erdelský K, Barančok P (1986a) Cultivating embryos of the silver fir (Abies alba Mill.) in vitro. Acta FRN Univ Comen Physiol Plant XXIII:25–29

    Google Scholar 

  • Erdelský K, Barančok P (1986b) Growth induction of callus and organ cultures of the fir (Abies alba Mill.). Acta FRN Univ Comen Physiol Plant XXII:41–49

    Google Scholar 

  • Fady B, Conkle MT (1993) Allozyme variation and possible phylogenetic implications in Abies cephalonica Loudon and some related eastern Mediterranean firs. Silvae Genet 42:351–359

    Google Scholar 

  • Fady B, Arbez M, Marpeau A (1992) Geographic variability of terpene composition in Abies cephalonica Loudon and Abies species around the Aegean: hypotheses for their possible phylogeny from the Miocene. Trees 6:162–171

    Google Scholar 

  • Fady-Welterlen B (2005) Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 54:905–910

    Google Scholar 

  • FAO (2013) Genebank standards for plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • Forest Europe (2011) State of Europe’s forests 2011: status and trends in sustainable forest management in Europe. Forest Europe Liaison Unit, Oslo

    Google Scholar 

  • Gajdošová A, Vooková B, Kormuťák A, Libiaková G, Doležel J (1995) Induction, protein-composition and DNA-ploidy level of embryogenic calli of silver fir and its hybrids. Biol Plantarum 37:169–176

    Google Scholar 

  • Gale S, John A, Harding K, Benson EE (2008) Developing cryopreservation for Picea sitchensis (Sitka spruce) somatic embryos: a comparison of vitrification protocols. Cryoletters 29:135–144

    PubMed  Google Scholar 

  • Geburek T, Turok J (2005) Conservation and sustainable management of forest genetic resources in Europe—an introduction. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora, Rome, pp 3–10. ISBN 80-967088–3

    Google Scholar 

  • Geburek T, Robitschek K, Milasowszky N (2008) A tree of many faces: why are there different crown types in Norway spruce (Picea abies (L.) Karst.)? Flora 203:126–133

    Google Scholar 

  • Gömöry D, Paule L, Krajmerová D, Romšáková I, Longauer R (2012) Admixture of genetic lineages of different glacial origin: a case study of Abies alba Mill. in the Carpathians. Plant Syst Evol 298:703–712

    Google Scholar 

  • Grossnickle SC, Folk RS, Abrams SR, Dunstan DI, Rose PA (1996) Performance of interior spruce seedlings treated with abscisic acid analogs. Can J For Res 26:2061–2070

    CAS  Google Scholar 

  • Gupta PK, Durzan DJ, Finkle BJ (1987) Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (Loblolly pine) after thawing from liquid-nitrogen. Can J For Res 17:1130–1134

    Google Scholar 

  • Häggman HM, Aronen TS, Ryynanen LA (2000) Cryopreservation of embryogenic cultures of conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 6. Kluwer, Dordrecht, pp 707–728

    Google Scholar 

  • Häggman H, Rusanen M, Jokipii S (2008) Cryopreservation of in vitro tissues of deciduous forest trees. In: Re BM (ed) Plant cryopreservation. A practical guide. Springer, Dordrecht, pp 365–386

    Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecology Letters 8:461–467

    Google Scholar 

  • Hansen JK, Larsen JB (2004) European silver fir (Abies alba Mill.) provenances from Calabria, southern Italy: 15-year results from Danish provenance field trials. Eur J For Res 123:127–138

    Google Scholar 

  • Hansen OK, Kjaer ED, Vendramin GG (2005) Chloroplast microsatellite variation in Abies nordmanniana and simulation of causes for low differentiation among populations. Tree Genet Genome 1(3):116–123

    Google Scholar 

  • Hazubska-Przybyl T, Chmielarz P, Michalak M, Bojarczuk K (2010) Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell Tissue Organ Cult 102:35–44

    Google Scholar 

  • Hazubska-Przybyl T, Chmielarz P, Michalak M, Dering M, Bojarczuk K (2013) Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell Tissue Organ Cult 113:303–313

    CAS  Google Scholar 

  • Holeksa J, Saniga M, Szwagrzyk J, Czerniak M, Staszynska K, Kapusta P (2009) A giant tree stand in the West Carpathians—an exception or a relic of formerly widespread mountain European forests? For Ecol Manage 257:1577–1585

    Google Scholar 

  • Hristoforoglu K, Schmidt J, Bolharnordenkampf H (1995) Development and germination of Abies alba somatic embryos. Plant Cell Tissue Organ Cult 40:277–283

    Google Scholar 

  • Johnson KH, Vogt KA, Clark HS, Schmitz OJ, Vogt, DJ (1996) Biodiversity and the productivity and stability of ecosystems. Trends Ecol Evol 11:372–377

    PubMed  CAS  Google Scholar 

  • Kartha KK, Fowke LC, Leung NL, Caswell KL, Hakman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J Plant Physiol 132:529–539

    CAS  Google Scholar 

  • Kobliha J, Stejskal J, Lstibůrek M, Typta J, Tomášková I, Jakubův P (2013) Testing of hybrid progenies and various species of genus Abies for forestry, decorating horticulture and Christmas tree production. Acta Sci Pol Hortorum Cultus 12(4):85–94

    Google Scholar 

  • Kong LS, von Aderkas P (2011) A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tissue Organ Cult 106:115–125

    CAS  Google Scholar 

  • Konnert M, Bergmann F (1995) The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 196:19–30

    Google Scholar 

  • Konnert M, Fady B, Gömöry D, A’Hara S, Wolter F, Ducci F, Koskela J, Bozzano M, Maaten T, Kowalczyk J (2014) Use and transfer of forest reproductive material in Europe in the context of climate change. Biodiversity International, Rome

    Google Scholar 

  • Kormuťák A, Vooková B (2001) Early growth characteristics of some Abies hybrids. In: Müller-Starck G, Schubert R (eds) Genetic response of forest systems to changing environmental conditions. Forestry sciences. vol 70. Kluwer, Dordrecht, pp 331–338

    Google Scholar 

  • Koskela J, Lefèvre F, Schueler S, Kraigher H, Olrik DC, Hubert J, Longauer R, Bozzano M, Yrjänä L, Alizoti P, Rotach P, Vietto L, Bordacs S, Myking T, Eysteinsson T, Souvannavong O, Fady B, De Cuyper B, Heinze B, von Wuhlisch G, Ducousso A, Ditlevsen B (2013) Translating conservation genetics into management: pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biol Conserv 157:39–49

    Google Scholar 

  • Krajňáková J, Gömöry D, Häggman H (2008) Somatic embryogenesis in Greek fir. Can J For Res 38:760–769

    Google Scholar 

  • Krajňáková J, Häggman H, Gömöry D (2009) Effect of sucrose concentration, polyethylene glycol and activated charcoal on maturation and regeneration of Abies cephalonica somatic embryos. Plant Cell Tissue Organ Cult 96:251–262

    Google Scholar 

  • Krajňáková J, Sutela S, Aronen T, Gömöry D, Vianello A, Häggman H (2011a) Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiology 63:17–25

    Google Scholar 

  • Krajňáková J, Sutela S, Gömöry D, Vianello A, Häggman H (2011b) Bioenergetic parameters during cryopreservation of two Abies cephalonica embryogenic cell lines. Grapin A, Keller ERJ, Lynch PT, Panis B, Bahillo AR, Engelmann F (eds) Cryopreservation of crop species in Europe. Proceedings of the final meeting Agrocampus Ouest INHP, Angres, France, 8–11 Feb 2011, pp 44–47

    Google Scholar 

  • Krajňáková J, Bertolini A, Gömöry D, Vianello A, Häggman H (2013) Initiation, long-term cryopreservation, and recovery of Abies alba Mill. embryogenic cell lines. In Vitro Cell Dev Biol 49:560–571

    Google Scholar 

  • Kushnarenko SV, Romadanova NV, Reed BM (2009) Cold acclimation improves regrowth of cryopreserved apple shoot tips. CryoLetters 30:47–54

    PubMed  CAS  Google Scholar 

  • Lambardi M, Ozudogru EI, Benelli C (2008) Cryopreservation of embryogenic cultures. In: Read BM (ed) Plant cryopreservation. A practical guide. Springer, Dordrecht, pp 177–210

    Google Scholar 

  • Larsen JB (1986) Das Tannensterben: Eine neue Hypothese zur Klärung des Hintergrundes dieser rätselhaften Komplexkrankheit der Weisstanne (Abies alba Mill.). Forstwiss Centralbl 105:381–396

    Google Scholar 

  • Larsen JB, Mekić F (1991) The geographic variation in European silver fir (Abies alba Mill.). Silvae Genet 40:188–198

    Google Scholar 

  • Lefèvre F, Koskela J, Hubert J, Kraigher H, Longauer R, Olrik DC, Schueler S, Bozzano M, Alizoti P, Bakys R, Baldwin C, Ballian D, Black-Samuelsson S, Bednárová D, Bordács S, Collin E, De Cuyper B, De Vries SMG, Eysteinsson T, Frýdl J, Haverkamp M, Ivanković M, Konrad H, Koziol C, Maaten T, Paino EN, Ozturk H, Pandeva ID, Parnuta G, Pilipović A, Postolache D, Ryan C, Steffenrem A, Varela MC, Vessella F, Volosyanchuk RT, Westergren M, Wolter F, Yrjänä L, Zarina I (2013) Dynamic conservation of forest genetic resources in 33 European countries. Conserv Biol 27:373–384

    PubMed  Google Scholar 

  • Leibundgut H (1976) Die grössten Fichten und Tannen. Schweiz Zeit Forstwirtsch 127:427

    Google Scholar 

  • Li DZ, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14:614–621

    PubMed  CAS  Google Scholar 

  • Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Natl Acad Sci U S A 99:14590–14594

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liepelt S, Chedaddi R, de Beaulieu JL, Fady B, Gömöry D, Hussendörfer E, Konnert M, Litt T, Longauer R, Terhürne-Berson R, Ziegenhagen B (2009) Biogeographic history of Abies alba Mill.—a synthesis from paleobotanic and genetic data. Rev Palaeobot Palynol 153:139–149

    Google Scholar 

  • Longauer R, Gömöry D, Paule L, Karnosky DF, Maňkovská B, Müller-Starck G, Percy K, Szaro R (2001) Selection effects of air pollution to gene pools of Norway spruce, European silver fir and European beech. Environ Pollut 115(3):405–411.

    PubMed  CAS  Google Scholar 

  • Martinetto E (2001) The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobot 41(2):299–319

    Google Scholar 

  • Mayer H (1984) Waldbau auf soziologisch-oekologischer Grundlage. Gustav Fischer, Stuttgart

    Google Scholar 

  • Mayer H, Reimoser F, Kral F (1982) Ergebnisse des Internationalen Tannenherkunftsversuches Wien 1967–1978. Morphologie und Wuchsverhalten der Provenienzen. Centralbl Ges Forstwes 99:169–191

    Google Scholar 

  • Menzies MI, Aimers-Halliday J (2004) Propagation options for clonal forestry with conifers. In: Walter C, Carlson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Kerala, pp 255–274

    Google Scholar 

  • Misson JP, Druart P, Panis B, Watillon B (2006) Contribution to the study of the maintenance of somatic embryos of Abies nordmanniana Lk: culture media and cryopreservation method. Propag Ornam Plants 6:17–23

    Google Scholar 

  • Mosca E, Eckert AJ, Di Pierro EA, Rocchini D, La Porta N, Belletti P, Neale DB (2012a) The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Mol Ecol 21(22):5530–5545

    CAS  Google Scholar 

  • Mosca E, Eckert AJ, Liechty JD, Wegrzyn JL, La Porta N, Vendramin GG, Neale DB (2012b) Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests. Evol Appl 5(7):762–775

    CAS  Google Scholar 

  • Nawrot-Chorabik K (2008) Embryogenic callus induction and differentiation in silver fir (Abies alba Mill.) tissue cultures. Dendrobiology 59:31–40

    CAS  Google Scholar 

  • Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang SJ, Wilde HD, Kodrzycki RJ, Zhang CS, Gause KC, Parks DW, Hinchee MA (2005) Forest biotechnology: innovative methods, emerging opportunities. In Vitro Cell Dev Biol Plant 41:701–717

    CAS  Google Scholar 

  • Nellemann C, MacDevette M, Manders T, Eickhout B, Svihus B, Prins AG, Kaltenborn BP (eds) (2009) The environmental food crisis—the environment’s role in averting future food crises. A UNEP rapid response assessment. United Nations Environment Programme, GRID-Arendal. http://www.grida.no/files/publications/FoodCrisis_lores.pdf

  • Nørgaard JV (1997) Somatic embryo maturation and plant regeneration in Abies nordmanniana Lk. Plant Sci 124:211–221

    Google Scholar 

  • Nørgaard JV, Krogstrup P (1995) Somatic embryogenesis in Abies spp. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Gymnosperms, vol 3. Kluwer, Dordrecht, pp 341–355

    Google Scholar 

  • Nørgaard JV, Baldursson S, Krogstrup P (1993) Genotypic differences in the ability of embryogenic Abies nordmanniana cultures to survive cryopreservation. Silvae Genetica 42:93–97

    Google Scholar 

  • Oldfield SF (2009) Botanical gardens and the conservation of tree species. Trends Plant Sci 114(11):581–583

    Google Scholar 

  • Ozturk M, Gucel S, Kucuk M, Sakcali S (2010) Forest diversity, climate change and forest fires in the Mediterranean region of Turkey. J Environ Biol 31:1–9

    PubMed  Google Scholar 

  • Panetsos CR (1975) Monograph of Abies cephalonica LOUDON. Anali za Šumarstvo 7:1–22

    Google Scholar 

  • Parducci L, Szmidt AE, Madaghiele A, Andizei M, Vendramin GG (2001) Genetic variation at chloroplast microsatellites (cpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species. Theor Appl Genet 102:733–740

    CAS  Google Scholar 

  • Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656

    Google Scholar 

  • Park YS (2013) Conifer somatic embryogenesis and multi-varietal forestry. In: Fenning T (ed) Challenges and opportunities for the world’s forests in the 21st century. Forestry sciences, vol 81. Springer, Berlin, pp 425–441, ISBN 978-94-007–7075–1

    Google Scholar 

  • Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47:176–187

    Google Scholar 

  • Pence VC (2014) Tissue Cryopreservation for plant conservation: potential and challenges. Int J Plant Sci 175:40–45

    Google Scholar 

  • Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54:877–885

    Google Scholar 

  • Pijut PM, Lawson SS, Michler CH (2011) Biotechnological efforts for preserving and enhancing temperate hardwood tree biodiversity, health, and productivity. In Vitro Cell Dev Biol Plant 47:123–147

    Google Scholar 

  • Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Google Scholar 

  • Roschanski AM, Fady B, Ziegenhagen B, Liepelt S (2013) Annotation and re-sequencing of genes from de novo transcriptome assembly of Abies alba (Pinaceae). Appl Plant Sci 1(1):1200179

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    PubMed  CAS  Google Scholar 

  • Salaj T, Matúšová R, Salaj J (2004) The effect of carbohydrates and polyethylene glycol on somatic embryo maturation in hybrid fir Abies alba × Abies numidica. Acta Biol Cracov Ser Bot 46:159–167

    Google Scholar 

  • Salaj T, Matušíková I, Panis B, Swennen R, Salaj J (2010) Recovery and characterisation of hybrid firs (Abies alba x A. cephalonica, Abies alba × A. numidica) embryogenic tissues after cryopreservation. Cryoletters 31:206–217

    PubMed  CAS  Google Scholar 

  • Salaj T, Salaj J (2003) Somatic embryo formation on mature Abies alba × Abies cephalonica zygotic embryo explants. Biol Plantarum 47:7–11

    CAS  Google Scholar 

  • Salajová T, Salaj J (2001) Somatic embryogenesis and plantlet regeneration from cotyledon explants isolated from emblings and seedlings of hybrid firs. J Plant Physiol 158:747–755

    Google Scholar 

  • Salajová T, Jásik J, Kormuťák A, Salaj J, Hakman I (1996) Embryogenic culture initiation and somatic embryo development in hybrid firs (Abies alba × Abies cephalonica, and Abies alba × Abies numidica). Plant Cell Rep 15:527–530

    PubMed  Google Scholar 

  • Scaltsoyiannes A, Tsaktsira M, Drouzas A (1999) Allozyme differentiation in the Mediterranean firs (Abies, Pinaceae). A first comparative study with phylogenetic implications. Plant Syst Evol 216:289–307

    CAS  Google Scholar 

  • Skrøppa T (2005) Ex situ conservation methods. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora, Rome, pp 237–274, ISBN 80-967088–3

    Google Scholar 

  • Sutton WRJ (2013) Save the forests: use more wood. In: Fenning T (ed) Challenges and opportunities for the World’s forests in the 21st Century. Forestry sciences, vol 81. Springer, Berlin, pp 213–230, ISBN 978-94-007-7075–1

    Google Scholar 

  • Svenning JC (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol Lett 6:646–653

    Google Scholar 

  • Terhürne-Berson R, Litt T, Cheddadi R (2004) The spread of Abies throughout Europe since the last glacial period: combined macrofossil and pollen data. Veg Hist Archaeobot 13:257–268

    Google Scholar 

  • Terrab A, Talavera S, Arista M, Paun O, Stuessy TF, Tremetsberger K (2007) Genetic diversity of chloroplast microsatellites (cpSSRs) and geographic structure in endangered West Mediterranean firs (Abies spp., Pinaceae). Taxon 56(2):409–416

    Google Scholar 

  • Tinner W, Colombaroli D, Heiri O, Henne PD, Steinacher M, Untenecker J, Vescovi E, Allen JM, Carraro G, Conedera M, Joos F, Lotter AF, Luterbacher J, Samartin S, Valsecchi V (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83(4):419–439

    Google Scholar 

  • Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124

    CAS  Google Scholar 

  • Vondráková Z, Eliašová K, Fischerová L, Vágner M (2011) The role of auxins in somatic embryogenesis of Abies alba. Cent Eur J Biol 6:587–596

    Google Scholar 

  • Vooková B, Kormuťák A (2002) Some features of somatic embryo maturation of Algerian fir. In Vitro Cell Dev Biol Plant 38:549–551

    Google Scholar 

  • Vooková B, Kormuťák A (2003) Plantlet regeneration in Abies cilicica Carr. and Abies cilicica × Abies nordmanniana hybrid via somatic embryogenesis. Turk J Bot 27:71–76

    Google Scholar 

  • Vooková B, Kormuťák A (2007) Abies biotechnology—research and development of tissue culture techniques for vegetative propagation. Global Science Books, Takamatsu, pp 39–46

    Google Scholar 

  • Vooková B, Kormuťák A (2009) Improved plantlet regeneration from open-pollinated families of Abies alba trees of Dobroč primeval forest and adjoining managed stand via somatic embryogenesis. Biologia 64:1136–1140

    Google Scholar 

  • Vooková B, Kormuťák A (2014) Study of Abies somatic embryogenesis and its application. Dendrobiology 71:149–157

    Google Scholar 

  • Vooková B, Gajdošová A, Matúšová R (1998) Somatic embryogenesis in Abies alba × Abies alba and Abies alba × Abies nordmanniana hybrids. Biol Plantarum 40:523–530

    Google Scholar 

  • Vooková B, Matúšová R, Kormuťák A (2003) Secondary somatic embryogenesis in Abies numidica. Biol Plantarum 46:513–517

    Google Scholar 

  • Whetten RW, Kellison R (2010) Research gap analysis for application of biotechnology to sustaining US forests. J For 108:193–201

    Google Scholar 

  • Willis KJ, Rudner E, Sümegi P (2000) The full-glacial forests of central and southeastern Europe. Quatern Res 53:203–213

    Google Scholar 

  • Wolf H (2003) Technical guidelines for genetic conservation and use for silver fir (Abies alba). IPGRI, Rome

    Google Scholar 

Download references

Acknowledgment

Authors thank the EUFORGEN as the source of information for downloading the distribution maps from http://www.euforgen.org/distribution_maps.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Krajňáková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krajňáková, J., Gömöry, D., Häggman, H. (2014). Biotechnology Tools for Conservation of the Biodiversity of European and Mediterranean Abies Species. In: Ahuja, M., Ramawat, K. (eds) Biotechnology and Biodiversity. Sustainable Development and Biodiversity, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09381-9_14

Download citation

Publish with us

Policies and ethics