Social Network Analysis in the Enterprise: Challenges and Opportunities

  • Valentin Burger
  • David Hock
  • Ingo Scholtes
  • Tobias Hoßfeld
  • David Garcia
  • Michael Seufert
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


Enterprise social software tools are increasingly being used to support the communication and collaboration between employees, as well as to facilitate the collaborative organisation of information and knowledge within companies. Not only do these tools help to develop and maintain an efficient social organisation, they also produce massive amounts of fine-grained data on collaborations, communication and other forms of social relationships within an enterprise. In this chapter, we argue that the availability of these data provides unique opportunities to monitor and analyse social structures and their impact on the success and performance of individuals, teams, communities and organisations. We further review methods from the planning, design and optimisation of telecommunication networks and discuss challenges arising when wanting to apply them to optimise the structure of enterprise social networks.


Cluster Coefficient Telecommunication Network Collaboration Network Closeness Centrality Social Network Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cohen R, Erez K, Ben Avraham D, Havlin S (2001) Breakdown of the internet under intentional attack. Phys Rev Lett 86:3682–3685. doi:10.1103/PhysRevLett.86.3682,
  2. 2.
    Dunbar R (1998) Grooming, gossip, and the evolution of language. Harvard University Press, CambridgeGoogle Scholar
  3. 3.
    Fiedler M (1973) Algebraic connectivity of graphs. Czechoslov Math J 23(2):298–305MathSciNetGoogle Scholar
  4. 4.
    Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40(1):35–41.
  5. 5.
    Garcia D, Mavrodiev P, Schweitzer F (2013) Social resilience in online communities: the autopsy of friendster. In: Proceedings of the first ACM conference on online social networks (COSN’13), Boston. ACM, New York, pp 39–50. doi:10.1145/2512938.2512946.
  6. 6.
    Garcia D, Zanetti MS, Schweitzer F (2013) The role of emotions in contributors activity: a case study of the GENTOO community. In: Proceedings of the 3rd international conference on social computing and its applications (SCA2013), AnaheimGoogle Scholar
  7. 7.
    Hock D, Hartmann M, Gebert S, Jarschel M, Zinner T, Tran-Gia P (2013) Pareto-optimal resilient controller placement in SDN-based core networks. In: 25th international teletraffic congress (ITC), ShanghaiGoogle Scholar
  8. 8.
    Hock D, Hartmann M, Menth M, Schwartz C (2010) Optimizing unique shortest paths for resilient routing and fast reroute in IP-based networks. In: IEEE/IFIP network operations and management symposium (NOMS), OsakaGoogle Scholar
  9. 9.
    Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125. doi:,
  10. 10.
    Newman ME (2010) Networks: an introduction. Oxford University Press, Oxford/New YorkCrossRefGoogle Scholar
  11. 11.
    Olguin D, Waber B, Kim T, Mohan A, Ara K, Pentland A (2009) Sensible organizations: technology and methodology for automatically measuring organizational behavior. IEEE Trans Syst Man Cybern Part B Cybern 39(1):43–55. doi:10.1109/TSMCB.2008.2006638CrossRefGoogle Scholar
  12. 12.
    Pfitzner R, Scholtes I, Garas A, Tessone CJ, Schweitzer F (2013) Betweenness preference: quantifying correlations in the topological dynamics of temporal networks. Phys Rev Lett 110:198,701. doi:10.1103/PhysRevLett.110.198701,
  13. 13.
    Scholtes I, Wider N, Pfitzner R, Garas A, Juan Tessone C, Schweitzer F (2013) Slow-down vs. speed-up of diffusion in non-Markovian temporal networks. ArXiv e-printsGoogle Scholar
  14. 14.
    Schöndienst V, Krasnova H, Günther O, Riehle D (2011) Micro-blogging adoption in the enterprise: an empirical analysis. In: Wirtschaftsinformatik, Zurich, p 22Google Scholar
  15. 15.
    Zanetti MS, Scholtes I, Tessone CJ, Schweitzer F (2013) The rise and fall of a central contributor: dynamics of social organization and performance in the GENTOO community. In: Proceedings of the 6th international workshop on cooperative and human aspects of software engineering (CHASE 2013) held at ICSE 2013, San FranciscoGoogle Scholar
  16. 16.
    Van Mieghem P (2012) Graph spectra for complex networks. Cambridge University Press, Cambridge/New YorkzbMATHGoogle Scholar
  17. 17.
    Wasserman S, Faust K (1994) Social network analysis: methods and applications. Structural analysis in the social sciences. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  18. 18.
    Wu CW (2005) Algebraic connectivity of directed graphs. Linear Multilinear Algebra 53(3):203–223MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zanetti MS, Sarigöl E, Scholtes I, Tessone CJ, Schweitzer F (2012) A quantitative study of social organisation in open source software communities. In: Jones AV (ed) 2012 Imperial College computing student workshop, openaccess series in informatics (OASIcs), London, vol 28. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, pp 116–122. doi:,
  20. 20.
    Zanetti MS, Scholtes I, Tessone CJ, Schweitzer F (2013) Categorizing bugs with social networks: a case study on four open source software communities. In: 35th international conference on software engineering (ICSE’13), San Francisco, 18–26 May 2013, pp 1032–1041Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Valentin Burger
    • 1
  • David Hock
    • 1
  • Ingo Scholtes
    • 2
  • Tobias Hoßfeld
    • 1
  • David Garcia
    • 2
  • Michael Seufert
    • 1
  1. 1.Institute of Computer ScienceUniversity of WürzburgWürzburgGermany
  2. 2.ETH ZürichZürichSwitzerland

Personalised recommendations