The Social Dimension of Information Ranking: A Discussion of Research Challenges and Approaches

Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

The ability to quickly extract relevant knowledge from large-scale information repositories like the World Wide Web, scholarly publication databases or Online Social Networks has become crucial to our information society. Apart from the technical issues involved in the storage, processing and retrieval of huge amounts of data, the design of automated mechanisms which rank and filter information based on their relevance (i) in a given context, and (ii) to a particular user has become a major challenge. In this chapter we argue that, due to the fact that information systems are increasingly interwoven with the social systems into which they are embedded, the ranking and filtering of information is effectively a socio-technical problem. Drawing from recent developments in the context of social information systems, we highlight a number of research challenges which we argue should become an integral part of a social informatics research agenda. We further review promising research approaches that can give rise to a systems design of information systems that addresses both its technical and social dimension in an integrated way.

References

  1. 1.
    Anvik J (2006) Automating bug report assignment. In: Proceedings of the 28th international conference on software engineering, ICSE ’06, Shanghai. ACM, New York, pp 937–940. 10.1145/1134285.1134457. http://doi.acm.org/10.1145/1134285.1134457
  2. 2.
    Bakshy E, Rosenn I, Marlow C, Adamic L (2012) The role of social networks in information diffusion. In: Proceedings of the 21st international conference on world wide web, Lyon. ACM, pp 519–528Google Scholar
  3. 3.
    Berners-Lee T, Groff JF (1992) Www. SIGBIO Newsl 12(3):37–40. 10.1145/147126.147133. http://doi.acm.org/10.1145/147126.147133
  4. 4.
    Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T (2008) What makes a good bug report? In: Proceedings of the 16th ACM SIGSOFT international symposium on foundations of software engineering, SIGSOFT ’08/FSE-16, Atlanta. ACM, New York, pp 308–318. 10.1145/1453101.1453146. http://doi.acm.org/10.1145/1453101.1453146
  5. 5.
    Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30(1–7):107–117. 10.1016/S0169-7552(98)00110-X. http://linkinghub.elsevier.com/retrieve/pii/S016975529800110X
  6. 6.
    Bughin J, Corb L, Manyika J, Nottebohm O, Chui M, de Muller Barbat B, Said R (2011) The impact of internet technologies: search. McKinsey&Company, High Tech PracticeGoogle Scholar
  7. 7.
    Cubranic D, Murphy GC (2004) Automatic bug triage using text categorization. In: Maurer F, Ruhe G (eds) SEKE, Banff, pp 92–97Google Scholar
  8. 8.
    Frisse M (1988) Searching for information in a hypertext medical handbook. Commun ACM 31(7):880–886CrossRefGoogle Scholar
  9. 9.
    Gao J, Buldyrev SV, Stanley HE, Havlin S (2012) Networks formed from interdependent networks. Nat Phys 8(1):40–48CrossRefGoogle Scholar
  10. 10.
    Garcia D, Schweitzer F (2012) Modeling online collective emotions. In: Proceedings of the 2012 workshop on data-driven user behavioral modelling and mining from social media-DUBMMSM ’12, CIKM2012, Maui. ACM, New York, p 37. 10.1145/2390131.2390147. http://dl.acm.org/citation.cfm?id=2390131.2390147
  11. 11.
    Goldman R, Shivakumar N, Venkatasubramanian S, Garcia-Molina H (1998) Proximity search in databases. In: Proceedings of the 24th international conference on very large data bases, VLDB ’98, New York. Morgan Kaufmann Publishers, San Francisco, pp 26–37. http://dl.acm.org/citation.cfm?id=645924.671346
  12. 12.
    Granovetter M (1973) The strength of weak ties. Am J Sociol 78(6):lGoogle Scholar
  13. 13.
    Halu A, Mondragón RJ, Panzarasa P, Bianconi G (2013) Multiplex pagerank. PLoS ONE 8(10):e78,293. 10.1371/journal.pone.0078293. http://dx.doi.org/10.1371%2Fjournal.pone.0078293
  14. 14.
    Hannak A, Sapiezynski P, Molavi Kakhki A, Krishnamurthy B, Lazer D, Mislove A, Wilson C (2013) Measuring personalization of web search. In: Proceedings of the 22nd international conference on world wide web, Rio de Janeiro. International World Wide Web Conferences Steering Committee, pp 527–538Google Scholar
  15. 15.
    Haveliwala T, Kamvar S, Jeh G (2003) An analytical comparison of approaches to personalizing pagerank. Technical report 2003–35, Stanford InfoLab. http://ilpubs.stanford.edu:8090/596/
  16. 16.
    Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125CrossRefGoogle Scholar
  17. 17.
    Introna L, Nissenbaum H (2000) The politics of search engines. IEEE Comput 54–62. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=816269
  18. 18.
    Jeh G, Widom J (2003) Scaling personalized web search. In: Proceedings of the 12th international conference on world wide web, WWW ’03, Budapest. ACM, New York, pp 271–279. 10.1145/775152.775191. http://doi.acm.org/10.1145/775152.775191
  19. 19.
    Kleinberg J (1999) Authoritative sources in a hyperlinked environment. J ACM (JACM) 46:604–632. http://dl.acm.org/citation.cfm?id=324140
  20. 20.
    Kraemer F, Overveld K, Peterson M (2010) Is there an ethics of algorithms? Ethics Inf Technol 13(3):251–260. 10.1007/s10676-010-9233-7. http://link.springer.com/10.1007/s10676-010-9233-7
  21. 21.
    Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media? In: Proceedings of the 19th international conference on world wide web, Raleigh. ACM, pp 591–600Google Scholar
  22. 22.
    Lerman K, Ghosh R (2010) Information contagion: an empirical study of the spread of news on Digg and Twitter social networks. ICWSM 10:90–97Google Scholar
  23. 23.
    Liben-Nowell D, Kleinberg J (2003) The link prediction problem for social networks. In: Proceedings of the twelfth international conference on information and knowledge management, CIKM ’03, New Orleans. ACM, New York, pp 556–559. 10.1145/956863.956972. http://doi.acm.org/10.1145/956863.956972
  24. 24.
    Mavrodiev P, Tessone CJ, Schweitzer F (2012) Effects of social influence on the wisdom of crowds. CoRR abs/1204.3463Google Scholar
  25. 25.
    Naaman M, Boase J, Lai, CH (2010) Is it really about me?: message content in social awareness streams. In: Proceedings of the 2010 ACM conference on computer supported cooperative work, Savannah. ACM, pp 189–192Google Scholar
  26. 26.
    Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford/New York. 10.1093/acprof:oso/9780199206650.001.0001. http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650
  27. 27.
    Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Technical report, Stanford InfoLab. http://ilpubs.stanford.edu:8090/422
  28. 28.
    Pariser E (2011) The filter bubble: what the Internet is hiding from you. Penguin, New YorkGoogle Scholar
  29. 29.
    Parunak HVD (2011) Swarming on symbolic structures: guiding self-organizing search with domain knowledge. In: Eighth international conference on information technology: new generations, ITNG 2011, Las Vegas, 11–13 Apr 2011, pp 896–901Google Scholar
  30. 30.
    Parunak HVD, Downs E, Yinger A (2011) Socially-constrained exogenously-driven opinion dynamics: explorations with a multi-agent model. In: SASO, Ann Arbor. IEEE, pp 158–167Google Scholar
  31. 31.
    Pfitzner R, Garas A (2012) Emotional divergence influences information spreading in Twitter. In: AAAI ICWSM 2012, pp 2–5Google Scholar
  32. 32.
    Pfitzner R, Scholtes I, Garas A, Tessone CJ, Schweitzer F (2013) Betweenness preference: quantifying correlations in the topological dynamics of temporal networks. Phys Rev Lett 110(19):198,701. 10.1103/PhysRevLett.110.198701. http://prl.aps.org/abstract/PRL/v110/i19/e198701
  33. 33.
    Rosvall M, Esquivel AV, Lancichinetti A, West JD, Lambiotte R (2013) Networks with memory. arXiv preprint, arXiv:1305.4807Google Scholar
  34. 34.
    Sarigöl E, Pfitzner R, Scholtes I, Garas A, Schweitzer F (2014) Predicting scientific success based on coauthorship networks. Working paperGoogle Scholar
  35. 35.
    Scheitzer F (2003) Brownian agents and active particles. Collective dynamics in the natural and social sciences. Springer series in synergetics. Springer, BerlinGoogle Scholar
  36. 36.
    Scholtes I, Wider N, Pfitzner R, Garas A, Tessone CJ, Schweitzer F (2013) Slow-down vs. speed-up of diffusion in non-markovian temporal networks. arXiv preprint. http://arxiv.org/abs/1307.4030
  37. 37.
    Šuvakov M, Garcia D, Schweitzer F, Tadić B (2012) Agent-based simulations of emotion spreading in online social networks. ArXiv e-printsGoogle Scholar
  38. 38.
    Tomforde S, Hähner J, Seebach H, Reif W, Sick B, Wacker A, Scholtes I (2014) Engineering and mastering interwoven systems. In: Proceedings of the 2nd international workshop on self-optimisation in organic and autonomic computing systems (SAOS 2014), LübeckGoogle Scholar
  39. 39.
    Walter FE, Battiston S, Schweitzer F (2009) Personalised and dynamic trust in social networks. In: Proceedings of the third ACM conference on Recommender systems – RecSys ’09, New York. ACM, New York, pp 197–204. 10.1145/1639714.1639747Google Scholar
  40. 40.
    Zanetti MS, Scholtes I, Tessone CJ, Schweitzer F (2013) Categorizing bugs with social networks: a case study on four open source software communities. In: Proceedings of the 35th international conference on software engineering, ICSE ’13, San Francisco, 18–26 May 2013, pp 1032–1041Google Scholar
  41. 41.
    Zwass V (2014) In: Encyclopaedia britannica http://www.britannica.com/EBchecked/topic/287895/information-system. Retrieved 11 Feb 2014

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ingo Scholtes
    • 1
  • René Pfitzner
    • 1
  • Frank Schweitzer
    • 1
  1. 1.Chair of Systems DesignETH ZurichZurichSwitzerland

Personalised recommendations