Skip to main content

The Color Logarithmic Image Processing (CoLIP) Antagonist Space

  • Chapter
  • First Online:
Color Image and Video Enhancement

Abstract

The color logarithmic image processing (CoLIP) is a mathematical framework for the representation and processing of color images. It is psychophysically well justified since it is consistent with several human visual perception laws and characteristics. It is mathematically and computationally relevant since it allows to consider color images as vectors in an abstract linear space, contrary to the classical color spaces (e.g., RGB and \(L^*a^*b^*\)). The first purpose of this chapter is to present the mathematical fundamentals of the CoLIP together with its main psychophysical connections (Grasmann’s law, color matching functions, chromaticity diagram, and the Maxwell triangle). The second purpose is to present some basic image processing and analysis techniques for contrast enhancement (histogram equalization, dynamic range maximization, and toggle contrast calculation), white balance correction, color transfer, K-means clustering, and filtering. Most of them are applied on various original color images in a comparative way between CoLIP, RGB, and \(L^*a^*b^*\) color spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    by Jerker Wågberg, More Research and DPC, www.more.se.

References

  1. Angulo, J.: Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis. Comput. Vision Image Underst. 107(1–2), 56–73 (2007)

    Article  Google Scholar 

  2. Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognit. 40(11), 2914–2929 (2007)

    Article  MATH  Google Scholar 

  3. Aytekin, O., Ulusoy, I.: Automatic segmentation of VHR images using type information of local structures acquired by mathematical morphology. Pattern Recognit. Lett. 32(13), 1618–1625 (2011)

    Article  Google Scholar 

  4. Barnett, V.: The ordering of multivariate data. J. R. Stat. Soc. Ser. A. 139(3), 318–354 (1976)

    Article  Google Scholar 

  5. Bouraoui, B., Ronse, C., Baruthio, J., Passat, N., Germain, P.: 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Comput. Med. Imag. Graph. 34(5), 377–387 (2010)

    Article  Google Scholar 

  6. Deng, G.: A generalized logarithmic image processing model based on the gigavision sensor model. IEEE Trans. Image Process. 21(3), 1406–1414 (2012)

    Article  MathSciNet  Google Scholar 

  7. Fairchild, M.D.: Color Appearance Models. Wiley The Atrium (2013)

    Google Scholar 

  8. Fechner, G.T.: Elemente der Psychophysik. Breitkopf und Härtel, Leipzig (1860)

    Google Scholar 

  9. Fechner, G.: Elements of Psychophysics, vol.1. Thoemmes Press, New York (1966). Traduction by E. G. Boring and by H. E. Adler

    Google Scholar 

  10. Fernandes, M., Gavet, Y., Pinoli, J.C.: Improving focus measurements using logarithmic image processing. J. Microsc. 242(3), 228–241 (2011). doi:10.1111/j.1365-2818.2010.03461.x

    Article  Google Scholar 

  11. Florea, C., Florea, L.: Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions. Int. J. Appl. Math. Comput. Sci. 23(3), 637–648 (2013)

    Article  MATH  Google Scholar 

  12. Florea, C., Vertan, C., Florea, L.: Logarithmic model-based dynamic range enhancement of hip x-ray images. In: Blanc-Talon, J., Philips,W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems, pp.587–596. Springer, Berlin (2007)

    Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd ed. Prentice Hall (2002)

    Google Scholar 

  14. González-Castro, V., Debayle, J., Pinoli, J.C.: Color adaptive neighborhood mathematical morphology and its application to pixel-level classification. Pattern Recognit. Lett. 47:50–62 (2014)

    Article  Google Scholar 

  15. Gordon, I.: Theories of Visual Perception, 3rd ed. Psychology Press (2004).

    Google Scholar 

  16. Gouinaud, H.: Traitement logarithmique d’images couleur. Ph.D. thesis, École Nationale Supérieure des Mines de Saint-Etienne (2013)

    Google Scholar 

  17. Gouinaud, H., Gavet, Y., Debayle, J., Pinoli, J.C.: Color correction in the framework of color logarithmic image processing. In: Proceedings of the 7th IEEE International Symposium on Image and Signal Processing and Analysis (ISISPA), pp. 129–133. Dubrovnik, Croatia (2011)

    Google Scholar 

  18. Grassmann, H.: Zur theorie der farbenmischung. Annalen der Physik. 165(5), 69–84 (1853)

    Article  Google Scholar 

  19. Hering, E.: Outlines of a Theory of the Light Sense. Harvard University Press Cambridge (1964). ( Trans. L. M. Hurvich and D. Jameson)

    Google Scholar 

  20. Jourlin, M., Pinoli, J.C.: Logarithmic image processing. Acta Stereologica. 6, 651–656 (1987)

    Google Scholar 

  21. Jourlin, M., Pinoli, J.C.: Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model. Signal Process. 41(2), 225–237 (1995). doi:10.1016/0165-1684(94)00102-6. URL http://dx.doi.org/10.1016/0165-1684(94)00102-6

    Article  MATH  Google Scholar 

  22. Jourlin, M., Breugnot, J., Itthirad, F., Bouabdellah, M., Closs, B., et al.: Logarithmic image processing for color images. Adv. Imag. Electron. Phys. 168(2):65–107 (2011)

    Google Scholar 

  23. Kaur, M., Kaur, J., Kaur, J.: Survey of contrast enhancement techniques based on histogram equalization. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 2(7) (2011)

    Google Scholar 

  24. Kreyszig, E.: Introductory Functional Analysis with Applications, vol.81. Wiley New York (1989)

    MATH  Google Scholar 

  25. Krueger, L.E.: Reconciling fechner and stevens: Toward a unified psychophysical law. Behav. Brain Sci. 12, 251–267 (1989). doi: 10.1017/S0140525X0004855X

    Article  Google Scholar 

  26. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol.1, pp. 281–297. California, USA (1967)

    Google Scholar 

  27. Matheron, G.: Random Sets and Integral Geometry. Wiley (1975)

    Google Scholar 

  28. Maxwell, J.C.: Theory of the perception of colors. Trans. R. Scottish Soc. Arts. 4, 394–400 (1856)

    Google Scholar 

  29. Navarro, L., Deng, G., Courbebaisse, G.: The symmetric logarithmic image processing model. Digit. Signal Process. 23(5), 1337–1343 (2013)

    Article  MathSciNet  Google Scholar 

  30. Oleari, C., Pavesi, M.: Grassmann’s laws and individual color-matching functions for non-spectral primaries evaluated by maximum saturation technique in foveal vision. Color Res. Appl. 33(4), 271–281 (2008). doi:10.1002/col.20421. URL http://dx.doi.org/10.1002/col.20421 http://dx.doi.org/10.1002/ http://dx.doi.org/10.1002/col.20421 col.20421

    Article  Google Scholar 

  31. Oppenheim, A.S., Stockham, R., et al.: Nonlinear filtering of multiplied and convolved signals (1968)

    Google Scholar 

  32. Panetta, K.A., Wharton, E.J., Agaian, S.S.: Human visual system-based image enhancement and logarithmic contrast measure. IEEE Transac. Syst. Man Cybern. Part B 38(1), 174–188 (2008)

    Article  Google Scholar 

  33. Pinoli, J.C.: Contribution à la modélisation, au traitement et à l’analyse d’image. Ph.D. thesis, Département de Mathématiques, Université de Saint-Etienne, France (1987)

    Google Scholar 

  34. Pinoli, J.C.: The logarithmic image processing model: Connections with human brightness perception and contrast estimators. J. Math. Image. Vis. 7(4), 341–358 (1997)

    Article  Google Scholar 

  35. Pinoli, J.C.: Mathematical Foundations of Image Processing and Analysis, vol.2. Wiley (2014)

    Book  MATH  Google Scholar 

  36. Priya, S., Kumar, T., Paul, V.: A novel approach to fabric defect detection using digital image processing. In: Signal Processing, Communication, Computing and Networking Technologies (ICSCCN), 2011 International Conference on, pp. 228–232 (2011)

    Google Scholar 

  37. Ramponi, G., Strobel, N., Mitra, S.K., Yu, T.H.: Nonlinear unsharp masking methods for image-contrast enhancement. J. Electron. Imag. 5(3), 353–366 (1996)

    Article  Google Scholar 

  38. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press (1982)

    Google Scholar 

  39. Sharma, G., Bala, R.: Digital Color Imaging Handbook. CRC press Boca Raton (2002)

    Google Scholar 

  40. Shvayster, H., Peleg, S.: Inversion of picture operators. Pattern Recognit. Lett. 5(1), 49–61 (1987)

    Article  Google Scholar 

  41. Soille, P.: Morphological Image Analysis Principles and Applications. Springer, New York (2003)

    MATH  Google Scholar 

  42. Sternberg, S.R.: Grayscale morphology. Comput. Vis. Graph. Image Process. 35(3), 333–355 (1986)

    Article  MathSciNet  Google Scholar 

  43. Stockman, A., Mollon, J.: The spectral sensitivities of the middle-and long-wavelength cones: an extension of the two-colour threshold technique of ws stiles. Perception. 15, 729–754 (1986)

    Article  Google Scholar 

  44. Svaetichin, G.: Spectral response curves from single cones. Acta. Physiol. Scand. Suppl. 39(134), 17–46 (1956)

    Google Scholar 

  45. Tuia, D., Pacifici, F., Kanevski, M., Emery, W.: Classification of very high spatial resolution imagery using mathematical morphology and support vector machines. IEEE Trans. Geosci. Remote Sens. 47(11), 3866–3879 (2009)

    Article  Google Scholar 

  46. von Kries, J.: Die gesichtsempfindungen. Handbuch der physiologie des menschen. 3:109–282 (1905)

    Google Scholar 

  47. Vorobel, R.A.: Logarithmic image processing. part 1: Basic model. Inf. Extr. Process. 107(31), 26–35 (2009)

    Google Scholar 

  48. Vorobel, R.A.: Logarithmic image processing. part 2: generalized model. Inf. Extr. Process. 107(31), 36–46 (2009)

    Google Scholar 

  49. Vos, J., Walraven, P.: On the derivation of the foveal receptor primaries. Vis. Res. 11(8), 799–818 (1971). doi:10.1016/0042-6989(71)90003-4

    Article  Google Scholar 

  50. Weber, E.: Der Tastsinn und das Gemeingefühl. Handwörterbuch der Physiologie. 3(2):481–588 (1846)

    Google Scholar 

  51. Wyszecki, G., Stiles, W.S.: Color science, vol.8. Wiley, New York (1982)

    Google Scholar 

  52. Young, T.: The bakerian lecture: On the theory of light and colours. Philosophical transactions of the Royal Society of London. pp.12–48 (1802)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Gavet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gavet, Y., Debayle, J., Pinoli, JC. (2015). The Color Logarithmic Image Processing (CoLIP) Antagonist Space. In: Celebi, E., Lecca, M., Smolka, B. (eds) Color Image and Video Enhancement. Springer, Cham. https://doi.org/10.1007/978-3-319-09363-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09363-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09362-8

  • Online ISBN: 978-3-319-09363-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics