Advertisement

Fluid Dynamics pp 453-477 | Cite as

Complements of Mathematics

  • Michel Rieutord
Chapter
  • 174k Downloads
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The idea of tensors arose when physicists started dealing with forces inside elastic solids (tensions lead to tensors). Mathematically speaking, tensors are multilinear forms.

Keywords

Boundary Layer Diffusion Equation Laplace Equation Singular Perturbation Order Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bass, J. (1978). Cours de Mathématiques. Paris: Masson.Google Scholar
  2. Bender, C. & Orszag, S. (1978). Advanced Mathematical Methods for scientists and engineers. New York: McGraw-Hill.Google Scholar
  3. Courant, R. & Hilbert, D. (1953). Methods of mathematical physics. London: Interscience.Google Scholar
  4. Dautray, R. & Lions, J.-L. 1984–1985 Analyse mathématique et calcul numérique. Paris: Masson.Google Scholar
  5. Hladik, J. (1993). Le calcul tensoriel en physique. Paris: Masson.Google Scholar
  6. Ince, E. L. (1956). Ordinary differential equations. New York: Dover.Google Scholar
  7. Lebedev, L., Cloud, M. & Eremeyev, V. (2010). Tensor analysis with applications in Mechanics. Singapore: World Scientific.Google Scholar
  8. O’Malley, R. (1991). Singular Perturbation Methods for Ordinary Differential Equations. Berlin: Springer.Google Scholar
  9. Zwillinger, D. (1992). Handbook of differential equations. New York: Academic Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michel Rieutord
    • 1
  1. 1.Institut de Recherche en Astrophysique et PlanétologieUniversité Paul SabatierToulouseFrance

Personalised recommendations