Advertisement

The Foundations of Fluid Mechanics

  • Michel Rieutord
Chapter
  • 176k Downloads
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The first step in Fluid Mechanics was certainly carried out by Archimedes ! ( − 287, − 212) who was a mathematician and a physicist in Antiquity. He formulated a now well-known theorem which says that a body immersed in a fluid supports an upward push equal to the weight of the displaced fluid.

Keywords

Heat Flux Velocity Field Internal Energy Contact Force Constitutive Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barnes, H., Hutton, J., & Walters, K. (1989). An introduction to rheology. Amsterdam: Elsevier.zbMATHGoogle Scholar
  2. Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  3. Chandrasekhar, S. (1961). Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press.zbMATHGoogle Scholar
  4. Faber, T. (1995). Fluid dynamics for physicists. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  5. Friedman, J., & Schutz, B. (1978). Lagrangian perturbation theory of nonrelativistic fluids. Astrophysical Journal, 221, 937–957.ADSCrossRefMathSciNetGoogle Scholar
  6. Goldstein, S. (1938, 1965). Modern developments in fluid dynamics. Oxford, Dover: Clarendon Press.Google Scholar
  7. Guyon, E., Hulin, J.-P., Petit, L., & Mitescu, C. (2001). Physical hydrodynamics. Oxford: Oxford University Press.zbMATHGoogle Scholar
  8. Landau, L., & Lifchitz, E. (1971–1989). Mécanique des fluides. Moscow: Mir.Google Scholar
  9. Lighthill, J. (1978). Waves in fluids. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  10. Paterson, A. (1983). First course in fluid mechanics. Cambridge: Cambridge University Press.Google Scholar
  11. Ryhming, I. (1985, 1991). Dynamique des fluides. Lausanne: Presses Polytech. Univ. Romandes.Google Scholar
  12. Schutz, B. (1980). Geometrical methods of mathematical physics. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  13. Sedov, L. (1975). Mécanique des milieux continus. Moscow: Mir.Google Scholar
  14. Tabeling, P. (2004). Phénomènes de glissement à l’interface liquide solide. Comptes Rendus Physique, 5, 531–537.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michel Rieutord
    • 1
  1. 1.Institut de Recherche en Astrophysique et PlanétologieUniversité Paul SabatierToulouseFrance

Personalised recommendations