Advertisement

Prediction of Protein Structure Classes with Ensemble Classifiers

  • Wenzheng Bao
  • Yuehui Chen
  • Dong Wang
  • Fanliang kong
  • Gaoqiang Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8590)

Abstract

Protein structure prediction is an important area of research in bioinformatics. In this research, a novel method to predict the structure of the protein is introduced. The amino acid frequencies, generalization dipeptide composition and typical hydrophobic composition of protein structure are treated as candidate feature. Flexible neural tree and neural network are employed as classification model. To evaluate the efficiency of the proposed method, a classical protein sequence dataset (1189) is selected as the test dataset. The results show that the method is efficient for protein structure prediction.

Keywords

protein structure prediction flexible neural tree neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levitt, M., Chothia, C.: Structural patterns in globular proteins. Nature 261, 552–558 (1976)CrossRefGoogle Scholar
  2. 2.
    Chou, K.C.: A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space. Proteins 21, 319–344 (1995)CrossRefGoogle Scholar
  3. 3.
    Xu Y&Xu, D.: Protein threading using PROSPECT: Design and evaluation. Proteins: Structure, Function, and Genetics 40, 343–354 (2000)CrossRefGoogle Scholar
  4. 4.
    Chothia, C., Lesk, A.M.: The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826 (1986)Google Scholar
  5. 5.
    Chothia, C., Lesk, A.M.: The relation between the divergence of sequence and structure in proteins. EMBO J. 5(4), 823–826 (1986)Google Scholar
  6. 6.
    Chung, S.Y., Subbiah, S.: A structural explanation for the twilight zone of protein sequence homology. Structure 4, 1123–1127 (1996)CrossRefGoogle Scholar
  7. 7.
    Kaczanowski, S., Zielenkiewicz, P.: Why similar protein sequences encode similar three-dimensional structures. Theoretical Chemistry Accounts 125, 543–550 (2010)CrossRefGoogle Scholar
  8. 8.
    Bairoch, A., Apweiler, R., Wu, C.H., et al.: The Universal Protein Resource (UniProt). Nucleic Acids Res. 33(Database Issue), D154–D159 (2005)Google Scholar
  9. 9.
    Helliwell, J.R.: Protein crystal perfection and its application. Acta Crystallographica D61(pt. 6): 793–798 (2005)Google Scholar
  10. 10.
    Nassif, H., Al-Ali, H., Khuri, S., Keirouz, W.: Prediction of protein-glucose binding sites using support vector machines. Proteins 77(1), 121–132 (2009)CrossRefGoogle Scholar
  11. 11.
    Söding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7), 951–960 (2005)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Wu, L.Y., Zhang, X.S., Chen, L.: Automatic classification of protein structures based on convex hull representation by integrated neural network. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 505–514. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Zhang, X.S., Zhan, Z.W., Wang, Y., Wu, L.Y.: An Attempt to Explore the Similarity of Two Proteins by Their Surface Shapes. In: Operations Research and Its Applications. Lecture Notes in Operations Research, vol. 5, pp. 276–284. World Publishing Corporation, Beijing (2005)Google Scholar
  14. 14.
    Kohonen, J., Talikota, S., Corander, J., Auvinen, P., Arjas, E.: A Naive Bayes classifier for protein function prediction. Silico. Biol. 9(1-2), 23–34 (2009)Google Scholar
  15. 15.
    Wang, Z.-X., Yuan, Z.: How good is the prediction of protein structural class by the component-coupled method? Proteins 38, 165–175 (2000)CrossRefGoogle Scholar
  16. 16.
    Zhang, C.T., Chou, K.C.: An optimization approach to predicting protein structural class from amino-acid composition. Protein Science 1, 401–408 (1992)CrossRefGoogle Scholar
  17. 17.
    Zhang, C.T., Chou, K.C., Maggiora, G.M.: Predicting protein structural classes from amino acid composition: application of fuzzy clustering. Protein Engineering 8, 425–435 (1995)CrossRefGoogle Scholar
  18. 18.
    Kedarisetti, K., Kurgan, L., Dick, S.: A comment on Prediction of protein structural classes by a new measure of information discrepancy (2006) (accepted)Google Scholar
  19. 19.
    Kedarisetti, K.D., Kurgan, L., Dick, S.: Classifier ensembles for protein structural class prediction with varying homology. Biochemical and Biophysical Research Communications 348, 981–988 (2006)CrossRefGoogle Scholar
  20. 20.
    Liu, T., Jia, C.: A high-accuracy protein structural class prediction algorithm using predicted secondary structural information. J. Theor. Biol. 267, 272–275 (2010)CrossRefGoogle Scholar
  21. 21.
    Shao, G., Chen, Y.: Predict the Tertiary Structure of Protein with Flexible Neural Tree. In: Huang, D.-S., Ma, J., Jo, K.-H., Gromiha, M.M. (eds.) ICIC 2012. LNCS, vol. 7390, pp. 324–331. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wenzheng Bao
    • 1
  • Yuehui Chen
    • 1
  • Dong Wang
    • 1
  • Fanliang kong
    • 1
  • Gaoqiang Yu
    • 1
  1. 1.School of Information Science and EngineeringUniversity of JinanJinanP.R. China

Personalised recommendations