Skip to main content

Quantitative Investigation of Photorefractive Substrate Materials

  • Chapter
  • First Online:
Photorefractive Optoelectronic Tweezers and Their Applications

Part of the book series: Springer Theses ((Springer Theses))

  • 442 Accesses

Abstract

The upcoming chapter will be concerned with the appropriate selection of substrate materials for the application as optoelectronic tweezers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Results partly obtained in collaboration with Hannes Futterlieb during his Bachelor thesis.

References

  1. B. Matthias, J. Remeike, Ferroelectricity in the Ilmenite Structure. Phys. Rev. 76(12), 1886–1887 (1949)

    Google Scholar 

  2. A. Ashkin, G. Boyd, J. Dziedzic, R. Smith et al., Optically-induced Refractive Index Inhomogeneities in LiNbO\(_3\) and LiTaO\(_3\). Appl. Phys. Lett. 9, 72–74 (1966)

    Article  ADS  Google Scholar 

  3. B. Sturman, V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach Science Publishers, Philadelphia, 1992)

    Google Scholar 

  4. K. Peithmann, A. Wiebrock, K. Buse, Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared. Appl. Phys. B Lasers Opt. 68(5), 777–784 (1999)

    Article  ADS  Google Scholar 

  5. J. Heanue, M. Bashaw, L. Hesselink, Volume holographic storage and retrieval of digital data. Science 265(5173), 749–752 (1994)

    Article  ADS  Google Scholar 

  6. K. Buse, A. Adibi, D. Psaltis, Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393(6686), 665–668 (1998)

    Article  ADS  Google Scholar 

  7. M. Esseling, A. Zaltron, N. Argiolas, G. Nava et al., Highly reduced iron-doped lithium niobate for opto-electronic tweezers. Appl. Phys. B Lasers Opt. 113(2), 191–197 (2013)

    Article  ADS  Google Scholar 

  8. K. Buse, J. Imbrock, E. Krätzig, K. Peithmann, Photorefractive Materials and their Application, chapter Photorefractive Effects in LiNbO \(_{3}\) and LiTaO \(_{3}\) (Springer, Berlin, 2007), pp. 83–126

    Google Scholar 

  9. R. Byer, J. Young, R. Feigelso, Growth of high-quality LiNbO\(_3\) crystals from congruent melt. J. Appl. Phys. 41(6), 2320 (1970)

    Article  ADS  Google Scholar 

  10. W. Phillips, D. Staebler, Control of Fe\(^{2+}\) concentration in iron-doped lithium-niobate. J. Electron. Mater. 3(2), 601–617 (1974)

    Article  ADS  Google Scholar 

  11. A. Ballman, Growth of piezoelectric and ferroelectric materials by Czochralski technique. J. Am. Ceram. Soc. 48(2), 112 (1965)

    Article  Google Scholar 

  12. V. Gopalan, T. Mitchell, Y. Furukawa, K. Kitamura, The role of nonstoichiometry in 180 degrees domain switching of \(LiNbO_{3}\) crystals. Appl. Phys. Lett. 72(16), 1981–1983 (1998)

    Article  ADS  Google Scholar 

  13. J. Carruthers, G. Peterson, M. Grasso, P. Bridenba, Nonstoichiometry and crystal growth of lithium niobate. J. Appl. Phys. 42(5), 1846–2000 (1971)

    Article  ADS  Google Scholar 

  14. M. Palatnikov, N. Sidorov, V. Skiba, D. Makarov et al., Effects of nonstoichiometry and doping on the Curie temperature and defect structure of lithium niobate. Inorg. Mater. 36(5), 489–493 (2000)

    Article  Google Scholar 

  15. K. Nassau, H. Levinste, G. Loiacono, Ferroelectric lithium niobate: 2. Preparation of single domain crystals. J. Phys. Chem. Solids 27(6–7), 989–1000 (1966)

    Article  ADS  Google Scholar 

  16. M.V. Ciampolillo, A. Zaltron, M. Bazzan, N. Argiolas et al., Iron doping of lithium niobate by thermal diffusion from thin film: study of the treatment effect. Appl. Phys. A Mater. Sci. Proc. 104(1), 453–460 (2011)

    Article  ADS  Google Scholar 

  17. M.V. Ciampolillo, A. Zaltron, M. Bazzan, N. Argiolas et al., Quantification of iron (Fe) in lithium niobate by optical absorption. Appl. Spectrosc. 65(2), 216–220 (2011)

    Article  ADS  Google Scholar 

  18. D. Berben, K. Buse, S. Wevering, P. Herth et al., Lifetime of small polarons in iron-doped lithium-niobate crystals. J. Appl. Phys. 87(3), 1034–1041 (2000)

    Article  ADS  Google Scholar 

  19. K. Peithmann, N. Korneev, M. Flaspohler, K. Buse et al., Investigation of small polarons in reduced iron-doped lithium-niobate crystals by non-steady-state photocurrent techniques. Physica Status Solidi A Appl. Res. 178(1), R1–R3 (2000)

    Article  ADS  Google Scholar 

  20. M.V. Ciampolillo, A. Zaltron, M. Bazzan, N. Argiolas et al., Lithium niobate crystals doped with iron by thermal diffusion: Relation between lattice deformation and reduction degree. J. Appl. Phys. 107(8) (2010)

    Google Scholar 

  21. A. Yariv, S. Orlov, G. Rakuljic, Holographic storage dynamics in lithium niobate: theory and experiment. J. Opt. Soc. Am. B Opt. Phys. 13(11), 2513–2523 (1996)

    Article  ADS  Google Scholar 

  22. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, New York, 1993)

    Google Scholar 

  23. H. Kogelnik, Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48(9), 2909–2947 (1969)

    Google Scholar 

  24. E. Serrano, V. Lopez, M. Carrascosa, F. Agullolopez, Steady-state photorefractive gratings in LiNbO\(_3\) for strong light-modulation depths. IEEE J. Quantum Electron. 30, 875–880 (1994)

    Google Scholar 

  25. E. Serrano, M. Carrascosa, F. AgulloLopez, Analytical and numerical study of photorefractive kinetics at high modulation depths. J. Opt. Soc. Am. B Opt. Phys. 13(11), 2587–2594 (1996)

    Article  ADS  Google Scholar 

  26. A. Marrakchi, J. Huignard, J. Herriau, Application of phase conjugation in Bi12SiO20 crystals to mode-pattern visualization of diffuse vibrating structures. Opt. Commun. 34(1), 15–18 (1980)

    Article  ADS  Google Scholar 

  27. H. Rajbenbach, S. Bann, P. Refregier, P. Joffre et al., Compact photorefractive correlator for robotic applications. Appl. Opt. 31(26), 5666–5674 (1992)

    Article  ADS  Google Scholar 

  28. M. Petrov, V. Bryksin, Photorefractive Materials and their Applications 2: Materials, chapter Space-Charge Waves in Sillenites: Rectification and Second-Harmonic Generation (Springer, Berlin, 2007) pp. 285–325

    Google Scholar 

  29. R. Eason, N. Vainos, Photoconductive enhancement of degenerate 4-wave mixing reflectivity in BSO. J. Mod. Opt. 35, 491–503 (1988)

    Article  ADS  Google Scholar 

  30. J. Wilde, L. Hesselink, S. McCahon, M. Klein et al., Measurement of electrooptic and electrogyratory effects in Bi12TiO20. J. Appl. Phys. 67(5), 2245–2252 (1990)

    Google Scholar 

  31. S. Stepanov, M. Petrov, Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric-field. Opt. Commun. 53(5), 292–295 (1985)

    Article  ADS  Google Scholar 

  32. K. Walsh, A. Powell, C. Stace, T. Hall, Techniques for the enhancement of space-charge fields in photorefractive materials. J. Opt. Soc. Am. B -Opt. Phys. 7(3), 288–303 (1990)

    Article  ADS  Google Scholar 

  33. A. Grunnet-Jepsen, C. Kwak, I. Richter, L. Solymar, Fundamental space-charge fields for applied alternating electric fields in photorefractive materials. J. Opt. Soc. Am. B Opt. Phys. 11(1), 124–131 (1994)

    Article  ADS  Google Scholar 

  34. C. Stace, A. Powell, K. Walsh, T. Hall, Coupling modulation in photorefractive materials by applying AC electric-fields. Opt. Commun. 70(6), 509–514 (1989)

    Article  ADS  Google Scholar 

  35. D. Staebler, J. Amodei, Coupled-wave analysis of holographic storage in LiNbO\(_3\). J. Appl. Phys. 43(3), 1042 (1972)

    Article  ADS  Google Scholar 

  36. P. Pellatfinnet, Measurement of the electro-optic coefficient of BSO crystals. Opt. Commun. 50(5), 275–280 (1984)

    Article  ADS  Google Scholar 

  37. H. Vogt, K. Buse, H. Hesse, E. Kratzig et al., Growth and holographic characterization of nonstoichiometric sillenite-type crystals. J. Appl. Phys. 90, 3167–3173 (2001)

    Article  ADS  Google Scholar 

  38. M. Esseling, S. Glaesener, F. Volonteri, C. Denz, Opto-electric particle manipulation on a bismuth silicon oxide crystal. Appl. Phys. Lett. 100(16), 161903 (2012)

    Article  ADS  Google Scholar 

  39. J. Kumar, G. Albanese, W. Steuer, M. Ziari, Enhanced 2-beam mixing gain in photorefractive GaAs using alternating electric fields. Opt. Lett. 12(2), 120–122 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Esseling .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Esseling, M. (2015). Quantitative Investigation of Photorefractive Substrate Materials. In: Photorefractive Optoelectronic Tweezers and Their Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-09318-5_4

Download citation

Publish with us

Policies and ethics