Skip to main content

General Aspects of Biomimetic Materials

  • Chapter
  • First Online:

Abstract

Natural materials like bone, ligaments, wood, shells, and scales are remarkably efficient in terms of fulfilling complex and multiple functional requirements with minimal amounts of matter. Mimicking design features found in these biomaterials like hierarchical structure and composite nature, and resorting to bio-inspired manufacturing processes like biomineralization and self-assembly could yield man-made materials that are multifunctional, lightweight, benign, and recyclable. More specifically, the incorporation of many of the characteristics and properties found in natural materials into paints, coatings, films, concrete, glass, ceramics, fibers, and insulation has the potential to revolutionize the way infrastructures and buildings are constructed. This chapter provides a concise coverage of the area of biomimetic materials. A brief outline of the discipline is followed by a discussion of general aspects related to the structure and synthesis of natural materials. Next, the recent progress made in the development of biomimetic materials with improved mechanical resistance, optical, self-cleaning, adhesiveness, and anti-adhesion properties is reviewed with reference made to the most noteworthy examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    STICK.S lightweight structural system, Ask Nature, Biomimicry 3.8. Accessed on the 14th March 2014, http://www.asknature.org/product/8779abb44e4bcd7a9e8f3bf18a2c0a89.

  2. 2.

    MacDermid Autotype, Wantage, UK.

  3. 3.

    ORNILUX Bird Protection Glass. Accessed on the 14th March 2014, http://www.ornilux.com/.

  4. 4.

    Sto Corp., Atlanta, Georgia.

  5. 5.

    Erlus AG, Neufharn, Germany.

  6. 6.

    BigSky Technologies LLC

  7. 7.

    Schoeller Textile AG, Sevelen, Switzerland.

  8. 8.

    BASF AG, Germany.

  9. 9.

    Columbia Forest Products, Greensboro, North Carolina.

  10. 10.

    PureBond Technology. Ask Nature, Biomimicry 3.8. Accessed on the 20th March 2014, http://www.asknature.org/product/22aa5601fcdb68b5d2dc9e3d3a22f7f1.

  11. 11.

    InterfaceFloor, LaGrange, Georgia.

  12. 12.

    InterfaceFlor, Learning from Nature. Accessed on the 20th March 2014, http://issuu.com/interfaceflor/docs/biomimetic_brochure_can.

References

  • Aili D, Liedberg B (2010) Biomimetic approaches to self-assembly of nanomaterials. In: Kumar C (ed) Biomimetic and bioinspired nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 343–377

    Google Scholar 

  • Bae W-G, Kim HN, Kim D, Park S-H, Jeong HE, Suh K-Y (2014) 25th Anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy. Adv Mater 26:675–700. doi:10.1002/adma.201303412

    Article  Google Scholar 

  • Bahadur V, Mishchenko L, Hatton B, Taylor JA, Aizenberg J, Krupenkin T (2011) Predictive model for ice formation on superhydrophobic surfaces. Langmuir 27:14143–14150. doi:10.1021/la200816f

  • Banthia N, Sappakittipakorn M, Jiang Z (2012) On permeable porosity in bio-inspired fibre reinforced cementitious composites. Int J Sustain Mater Struct Syst 1:29–41. doi:10.1504/IJSMSS.2012.050451

    Google Scholar 

  • Barthelat F (2007) Biomimetics for next generation materials. Philos Trans R Soc A 365:2907–2919. doi:10.1098/rsta.2007.0006

    Article  MathSciNet  Google Scholar 

  • Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M, Walheim S, Weis A, Kaltenmaier A, Leder A, Bohn HF (2010) The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv Mater 22:2325–2328. doi:10.1002/adma.200904411

    Article  Google Scholar 

  • Baum C, Simon F, Meyer W, Fleischer LG, Siebers D, Kacza J, Seeger J (2003) Surface properties of the skin of the pilot whale Globicephala melas. Biofouling 19:181–186

    Article  Google Scholar 

  • Benyus JM (1997) Echoing nature. In: Benyus JM (ed) Biomimicry: innovation inspired by nature. Harper Collins, New York, pp 1–10

    Google Scholar 

  • Bhushan B (2009) Biomimetics: lessons from nature—an overview. Philos Trans R Soc A 367:1445–1486. doi:10.1098/rsta.2009.0011

    Article  Google Scholar 

  • Bhushan B (2012) Bioinspired structured surfaces. Langmuir 28(3):1698–1714. doi:10.1021/la2043729

    Article  Google Scholar 

  • Bhushan B, Jung Y, Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans R Soc A 367:1631–1672. doi:10.1098/rsta.2009.0014

    Article  Google Scholar 

  • Bhushan B, Jung YC (2011) Natural and biomimetic surfaces for superhydrophobicity, self-cleaning low adhesion and drag reduction. Prog Mater Sci 56:1–108. doi:10.1016/j.pmatsci.2010.04.003

    Article  Google Scholar 

  • Bruce MJ, Heiling AM, Herberstein ME (2005) Spider signals: are web decorations visible to birds and bees? Biol Lett 1:299–305. doi:10.1098/rsbl.2005.0307

    Article  Google Scholar 

  • Cao M, Ju J, Li K, Dou S, Liu K, Jiang L (2014) Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv Funct Mater 24:3235–3240. doi:10.1002/adfm.201303661

  • Cereceda P, Larrain H, Osses P, Farías M, Egaña I (2008) The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmos Res 87:312–323. doi:10.1016/j.atmosres.2007.11.012

    Article  Google Scholar 

  • Chapman J, Hellio C, Sullivan T, Brown R, Russel S, Kiterringham E, Nor L, Regan F (2013) Bioinspired synthetic macroalgae: examples from nature for antifouling applications. Int Biodeteor Biodegrad 86:6–13. doi:10.1016/j.ibiod.2013.03.036

    Article  Google Scholar 

  • Cheng YT, Rodak D (2005) Is the lotus leaf superhydrophobic? Appl Phys Lett 86:144101. doi:10.1063/1.1895487

    Article  Google Scholar 

  • Chintapalli RK, Mirkhalaf M, Dastjerdi AK, Barthelat F (2014) Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms. Bioinspir Biomimet 9:036005. doi:10.1088/1748-3182/9/3/036005

    Article  Google Scholar 

  • Chung KK, Schumacher JF, Sampson EM, Burne RA, Antonelli PJ, Brennan AB (2007) Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2:89–94. doi:10.1116/1.2751405

    Article  Google Scholar 

  • Corni I, Harvey TJ, Wharton JA, Stokes KR, Walsh FC, Wood RJ (2012) A review of experimental techniques to produce a nacre-like structure. Bioinspir Biomimet 7:031001. doi:10.1088/1748-3182/7/3/031001

    Article  Google Scholar 

  • Diop S, Rekacewicz P (ed) (2008) Vital water graphics—an overview of the state of the world’s fresh and marine waters. UNEP

    Google Scholar 

  • Dorrer C, Rühe J (2008) Mimicking the Stenocara beetle—dewetting of drops from a patterned superhydrophobic surface. Langmuir 24:6154–6158. doi:10.1021/la800226e

    Article  Google Scholar 

  • Eadie L, Ghosh TK (2011) Biomimicry in textiles: past, present and potential. An overview. J R Soc Interface 8:761–775. doi:10.1098/rsif.2010.0487

    Article  Google Scholar 

  • Ellem GK, Furst JE, Zimmerman KD (2002) Shell clamping behaviour in the limpet Cellana tramoserica. J Exp Biol 205(Pt 4):539–547

    Google Scholar 

  • Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860. doi:10.1002/adma.200290020

    Article  Google Scholar 

  • Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24:4114–4119. doi:10.1021/la703821h

    Article  Google Scholar 

  • Fischer SF, Thielem M, Loprang RR, Seidel R, Fleck C, Speck T, Bührig-Polaczek A (2010) Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties. Adv Eng Mater 12:B658–B663. doi:10.1002/adem.201080065

  • Fish FE (2006) The myth and reality of Gray’s paradox: implication of dolphin drag reduction for technology. Bioinspir Biomimet 1:R17–R25. doi:10.1088/1748-3182/1/2/R01

    Article  Google Scholar 

  • Flammang P, Lambert A, Bailly P, Hennebert E (2009) Polyphosphoprotein—containing marine adhesives. J Adhesion 85:447–464. doi:10.1080/00218460902996358

    Article  Google Scholar 

  • Freeman CL, Harding JH, Quigley D, Rodger PM (2010) Structural control of crystal nuclei by an eggshell protein. Angew Chem Int Ed 49:5135–5137. doi:10.1002/anie.201000679

    Article  Google Scholar 

  • Garrod RP, Harris LG, Schofield WCE, McGettrick J, Ward LJ, Teare DOH, Badyal JPS (2007) Mimicking a Stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic−superhydrophilic surfaces. Langmuir 23:689–693. doi:10.1021/la0610856

    Article  Google Scholar 

  • Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19:2213–2217. doi:10.1002/adma.200601946

    Article  Google Scholar 

  • Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461–463. doi:10.1038/nmat917

    Google Scholar 

  • Greiner C (2010) Gecko-inspired materials. In: Kumar CSSR (ed) Biomimetic and bioinspired nanomaterials. Nanomaterials for the life sciences, vol 7. Willey-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:295–304. doi:10.1016/j.tibtech.2013.01.017

    Article  Google Scholar 

  • Huber G, Gorb SN, Spolenak R, Arzt E (2005) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2–4. doi:10.1098/rsbl.2004.0254

    Article  Google Scholar 

  • Ingram AL, Parker AR (2008) A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Philos Trans R Soc B 363:2465–2480. doi:10.1098/rstb.2007.2258

    Article  Google Scholar 

  • Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA, Pogodin S, Wang JY, Tobin MJ, Löbbe C, Crawford RJ (2012) Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8:2489–2494. doi:10.1002/smll.201200528

    Article  Google Scholar 

  • Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L (2012) A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun 3:1247. doi:10.1038/ncomms2253

    Article  Google Scholar 

  • Kim P, Wong TS, Alvarenga J, Kreder MJ, Adorno-Martinez WE, Aizenberg J (2012) Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6:6569–6577. doi:10.1021/nn302310q

    Article  Google Scholar 

  • Kinoshita S, Yoshioka S, Yasuhiro F, Okamoto N (2002) Photophysics of structural color in the Morpho butterflies. Forma 17:103−121

    Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–22. doi:10.1016/S0167-7799(00)01514-6

    Article  Google Scholar 

  • Knight K (2009) Barnacle cures like blood clots. J Exp Biol 212. doi: 10.1242/jeb.038927

  • Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos Trans R Soc A 367:1487–1509. doi:10.1098/rsta.2009.0022

    Article  Google Scholar 

  • Koch K, Ensikat H-J (2008) The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39:759–772. doi: 10.1016/j.micron.2007.11.010

  • Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanospheres formation. Science 286:1129–1132

    Article  Google Scholar 

  • Kumar VR, Bhuvaneshwari B, Maheswaran S, Palani GS, Ravisankar K, Iyer NR (2011) An overview of techniques based on biomimetics for sustainable development of concrete. Curr Sci 101:741–747

    Google Scholar 

  • Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. Ann Rev Mater Res 40:25–53. doi:10.1146/annurev-matsci-070909-104427

    Article  Google Scholar 

  • Lee H, Lee B, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448:338–341. doi:10.1038/nature05968

    Article  Google Scholar 

  • Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci 103:12999–13003. doi:10.1073/pnas.0605552103

    Article  Google Scholar 

  • Lepora NF, Verschure P, Prescott TJ (2013) The state of the art in biomimetics. Bioinspir Biomimet 8:013001. doi:10.1088/1748-3182/8/1/013001

    Article  Google Scholar 

  • Li J, Liang G, Zhu X, Yang S (2012) Exploiting nanoroughness on holographically patterned three-dimensional photonic crystals. Adv Funct Mater 22:2980–2986. doi:10.1002/adfm.201200013

    Article  Google Scholar 

  • Li SH, Zeng QY, Xiao YL, Fu SY, Zhou BL (1995) Biomimicry of bamboo bast fiber with engineering composite materials. Mater Sci Eng C 3:125–130. doi:10.1016/0928-4931(95)00115-8

    Article  Google Scholar 

  • Lim NSH, Everuss KJ, Goodman AE, Benkendorff K (2007) Comparison of surface microfouling and bacterial attachment on the egg capsules of two molluscan species representing Cephalopoda and Neogastropoda. Aquat Microb Ecol 47:275–287. doi:10.3354/ame047275

    Article  Google Scholar 

  • Liu K, Jiang L (2011) Multifunctional integration: from biological to bio-inspired materials. ACS Nano 5:6786–6790. doi:10.1021/nn203250y

    Article  Google Scholar 

  • Macedo MF, Miller AZ, Dionísio A, Saiz-Jimenez C (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology 155:3476–3490. doi:10.1099/mic.0.032508-0

    Article  Google Scholar 

  • Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206. doi:10.1016/j.pmatsci.2007.05.002

    Article  Google Scholar 

  • Meyers MA, McKittrick J, Chen P-Y (2013) Structural biological materials: critical mechanics-materials connections. Science 339:773–779. doi:10.1126/science.1220854

    Article  Google Scholar 

  • Mirkhalaf M, Dastjerdi AK, Barthelat F (2014) Overcomming the brittleness of glass through bioinspiration and micro-architecture. Nat Commun 5:3166. doi:10.1038/ncomms4166

    Article  Google Scholar 

  • Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J (2010) Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4:7699–7707. doi:10.1021/nn102557p

    Article  Google Scholar 

  • Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322:1516–1520. doi:10.1126/science.1164865

    Article  Google Scholar 

  • Nikolić R, Marinović-Cincović M, Gadžurić S, Zsigrai IJ (2003) New materials for solar thermal storage—solid/liquid transitions in fatty acid esters. Solar Energy Mater Solar Cells 79:285–292. doi:10.1016/S0927-0248(02)00412-9

    Article  Google Scholar 

  • Ornilux Bird Protection Glass, Arnold Glas (2014) http://www.ornilux.com/. Accessed from March 2014

  • Otten A, Herminghaus S (2004) How plants keep dry: a physicist’s point of view. Langmuir 20:2405–2408. doi:10.1021/la034961d

    Article  Google Scholar 

  • Oyen ML (2008) The materials science of bone: lessons from nature for biomimetic materials synthesis. MRS Bull 33:49–55. doi:10.1557/mrs2008.14

    Article  Google Scholar 

  • Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of inanimate environment in the incidence of hospital-acquired infections. J Mater Chem 19:3819–3831. doi:10.1039/b818698g

  • Pampaloni F, Masotti A (2010) Biomimetic and bioinspired self-assembled peptide structures. In: Kumar CSSR (ed) Biomimetic and bioinspired nanomaterials. Nanomaterials for the life sciences, vol 7. Willey-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414:33–34. doi:10.1038/35102108

    Article  Google Scholar 

  • Parker AR, McPhedran RC, McKenzie DR, Botten LC, Nicorovici NA (2001) Photonic engineering: Aphrodite’s iridescence. Nature 409:36–37. doi:10.1038/35051168

    Article  Google Scholar 

  • Pignalosa P, Liu B, Chen H, Smith H, Yi YS (2012) Giant light extraction enhancement of medical imaging scintillation materials using biologically inspired integrated nanostructures. Opt Lett 37:2808–2810. doi:10.1364/OL.37.002808

    Article  Google Scholar 

  • Popescu C, Höcker H (2007) Hair—the most sophisticated biological composite material. Chem Soc Rev 36:1282–1291. doi:10.1039/B604537P

    Article  Google Scholar 

  • Prum RO, Quinn T, Torres RH (2006) Anatomically diverse butterfly scales all produce structural colors by coherent scattering. J Exp Biol 209:748–765. doi:10.1242/jeb.02051

    Article  Google Scholar 

  • Santos R, Flammang P (2012) Is the adhesive material secreted by sea urchin tube feet species-specific? J Morphol 273:40–48. doi:10.1002/jmor.11004

    Article  Google Scholar 

  • Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98. doi:10.1080/08927014.2010.542809

    Article  Google Scholar 

  • Seago AE, Brady P, Vigneron J-P, Schultz TD (2009) Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface 6:S165–S184. doi:10.1098/rsif.2008.0354.focus

  • Shanyengana ES, Henschel JR, Seely MK, Sanderson RD (2002) Exploring fog as a supplementary water source in Namibia. Atmos Res 64:251–259. doi:10.1016/S0169-8095(02)00096-0

    Article  Google Scholar 

  • Shao H, Bachus KN, Stewart RJ (2008) A water-borne adhesive modeled after the sandcastle glue of P. californica. Macromol Biosci 9(5):464–471. doi:10.1002/mabi.200800252

    Article  Google Scholar 

  • Sharklet Technologies (2011) Understanding Sharklet surface protection products—a novel approach to improving cleanliness of high-touch environmental surfaces. Sharklet Technologies Inc., Aurora

    Google Scholar 

  • Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345. doi:10.1016/j.rser.2007.10.005

    Article  Google Scholar 

  • Sheppard C (2011) Bird-friendly building design. American Bird Conservancy, 58 p. http://www.abcbirds.org/newsandreports/BirdFriendlyBuildingDesign.pdf. Accessed March 2014

  • Stavenga DG, Leertouwer HL, Marshall NJ, Osorio D (2011) Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc R Soc B 278:2098–2104. doi:10.1098/rspb.2010.2293

    Article  Google Scholar 

  • Stratakis E, Zorba V (2010) Biomimetic artificial nanostructured surfaces. In: Kumar CSSR (ed) Biomimetic and bioinspired nanomaterials. Nanomaterials for the life sciences, vol 7. Willey-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Swiegers G (ed) (2012) Bioinspiration and biomimicry in chemistry: reverse-engineering nature. Wiley, New York. doi: 10.1002/9781118310083

  • Thickett SC, Neto C, Harris AT (2011) Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv Mater 23:3718–3722. doi:10.1002/adma.201100290

    Article  Google Scholar 

  • Trask RS, Williams HR, Bond IP (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomimet 2:P1. doi:10.1088/1748-3182/2/1/P01

    Article  Google Scholar 

  • Vignolini S, Rudall PJ, Rowland AV, Reed A, Moyroud E, Faden RB, Baumberg JJ, Glover BJ, Steiner U (2012) Pointillist structural color in Pollia fruit. Proc Natl Acad Sci 109:15712–16715. doi:10.1073/pnas.1210105109

    Article  Google Scholar 

  • Vincent JFV, Mann DL (2002) Systematic technology transfer from biology to engineering. Philos Trans R Soc Lond A 360:159–173. doi:10.1098/rsta.2001.0923

    Article  Google Scholar 

  • Vukusic P (2006) Structural color in Lepidoptera. Curr Biol 16(16):R621–R623. doi:10.1016/j.cub.2006.07.040

    Article  Google Scholar 

  • Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855. doi:10.1038/nature01941

    Article  Google Scholar 

  • Wang T, Konga S, Changa L, Wong C (2012) Preparation and heat-insulating property of the bio-inspired ZrO2 fibers based on the silk template. Ceram Int 38:6783–6788. doi:10.1016/j.ceramint.2012.05.074

    Article  Google Scholar 

  • Wegst UGK, Ashby MF (2004) The mechanical efficiency of natural materials. Philos Mag 84:2167–2181. doi:10.1080/14786430410001680935

    Article  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421. doi:10.1126/science.1070821

    Article  Google Scholar 

  • Wilson PW, Lu W, Xu H, Kim P, Kreder MJ, Alvarenga J, Aizenberg J (2012) Inhibition of Ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys Chem Chem Phys 15:581–585. doi:10.1039/C2CP43586A

    Article  Google Scholar 

  • Wool RP (2008) Self-healing materials. Soft Mater 4:400–418. doi:10.1039/b711716g

    Article  Google Scholar 

  • Yan F, Gang S, TongQing W, Qian C, LuQuan R (2007) Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing. Chin Sci Bull 52:711–716. doi:10.1007/s11434-007-0120-5

    Article  Google Scholar 

  • Yang Q, Zhang XA, Bagal A, Guo W, Chang C-H (2013) Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference. Nanotechnology 24:235202. doi:10.1088/0957-4484/24/23/235202

    Article  Google Scholar 

  • Youngblood JP, Sottos NR (2008) Bioinspired materials for self-cleaning and self-healing. MRS Bull 33:732–741. doi:10.1557/mrs2008.158

    Article  Google Scholar 

  • Zhai L, Berg MC, Cebeci FC, Kim Y, Milwid JM, Rubner MF, Cohen RE (2006) Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib desert beetle. Nano Lett 6:1213–1217. doi:10.1021/nl060644q

    Article  Google Scholar 

  • Zhao Q, Fan T, Ding J, Zhang D, Guo Q, Kamada M (2011) Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing. Carbon 49:877–883. doi:10.1016/j.carbon.2010.10.048

    Article  Google Scholar 

  • Zheng Y, Bai H, Huang Z, Tian X, Nie F-Q, Zhao Y, Zhai J, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463:640–643. doi:10.1038/nature08729

    Article  Google Scholar 

  • Zimmermann EA, Gludovatz B, Schaible E, Dave NKN, Yang W, Meyers MA, Ritchie RO (2013) Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat Commun 4:2634. doi:10.1038/ncomms3634

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. F. Prazeres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pereira, P.M.M., Monteiro, G.A., Prazeres, D.M.F. (2015). General Aspects of Biomimetic Materials. In: Pacheco Torgal, F., Labrincha, J., Diamanti, M., Yu, CP., Lee, H. (eds) Biotechnologies and Biomimetics for Civil Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-09287-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09287-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09286-7

  • Online ISBN: 978-3-319-09287-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics