Skip to main content

Bacteria for Concrete Surface Treatment

  • Chapter
  • First Online:
Biotechnologies and Biomimetics for Civil Engineering

Abstract

Bacterial induced calcium carbonate deposition, i.e., biodeposition is a widespread natural process, occurring under different conditions in the biosphere. For the moment, biodeposition has been investigated extensively both in natural processes and under laboratory conditions. Biodeposition has led to the exploration in the field of construction materials and has been studied in detail with numerous applications in civil engineering. Various mechanisms of bacterial induced deposition have been proposed. Biodeposition can be influenced by the environmental physicochemical conditions, and it is correlated with both the metabolic activity and the cell surface structures of bacteria. Surface treatment of concrete materials and structures by means of biodeposition, i.e., a bacterially deposited carbonate layer presents a promising novel biotechnology for the enhancement or improvement of durability of concrete materials and structures. Biodeposition make bacterial concrete, a novel most important metabolic byproduct, can remediate concrete structures. This chapter reviews the main mechanisms of the process and literature on biodeposition carbonates as surface treatment agents for the decrease in permeability of concrete materials and structures, bacterial induced carbonates as a binder material, i.e., biocementation, have been added to concrete for the improvement of compressive strength and the remediation of concrete surface cracks. The chapter suggests potential applications of biodeposition as an ecological and novel alternative to traditional techniques in subsurface remediation of concrete structures and accordingly enhancement in their service life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Mukherjee A, Basu P, Reddy MS (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36:981–988

    Article  Google Scholar 

  • Achal V, Mukherjee A, Reddy M (2011a) Microbial concrete: way to enhance the durability of building structures. J Mater Civil Eng 23:730–734

    Article  Google Scholar 

  • Achal V, Mukherjee A, Reddy M (2011b) Effect of calcifying bacteria on permeation properties of concrete structures. J Ind Microbiol Biotechnol 38:1229–1234

    Article  Google Scholar 

  • Achal V, Pan X, Ozyurt N (2011c) Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng 37:554–559

    Article  Google Scholar 

  • Achal V, Mukerjee A, Reddy MS (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5

    Google Scholar 

  • Afifudin H, Hamidah M, Hana H, Kartini K (2011) Microorganism precipitation in enhancing concrete properties. Appl Mech Mater 99–100:1157

    Google Scholar 

  • Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Sporosarcina pasteurii. Enzyme Microb Technol 28(4–5):404–409

    Article  Google Scholar 

  • Barabesi C, Salvianti F, Mastromei G, Perito B (2003) Microbial calcium carbonate precipitation for reinforcement of monumental stones. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. AA Balkema Publishers, Lisse, pp 209–212

    Google Scholar 

  • Barabesi C, Galizzi A, Mastromei G, Rossi M, Tamburini E, Perito B (2007) Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J Bacteriol 189(1):228–235

    Article  Google Scholar 

  • Basheer L, Kropp J, Cleland DJ (2001) Assessment of the durability of concrete from its permeation properties a review. Constr Build Mater 15(2–3):93–103

    Article  Google Scholar 

  • Bazylinski DA, Frankel RB, Konhauser KO (2007) Modes of biomineralization of magnetite by microbes. Geomicrobiol J 24:465–475

    Article  Google Scholar 

  • Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246(5434):527–529

    Article  Google Scholar 

  • Braissant O, Cailleau G, Dupraz C, Verrecchia E (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sediment Res 73(3):485–490

    Article  Google Scholar 

  • Burne RA, Chen RE (2000) Microbes Infect 2:533–542

    Article  Google Scholar 

  • Camaiti M, Borselli G, Matteol U (1988) Prodotti consalidanti impiegati nelle operazioni di restauro. Edilizia 10:125–134

    Google Scholar 

  • Castanier S, Me´tayer-Levrel L, Perthuisot J-P (1999) Ca-carbonates precipitation and limestone genesis-the microbiologist point of view. Sediment Geol 126:9–23

    Google Scholar 

  • Chahal N, Siddique R (2013) Permeation properties of concrete made with fly ash and silica fume: influence of Ureolytic bacteria. Constr Build Mater 49:161–174

    Article  Google Scholar 

  • Chahal N, Siddique R, Rajor A (2012) Influence of bacterial treated cement kiln dust on the properties of concrete. Constr Build Mater 52:42–51

    Google Scholar 

  • Day JL, Ramakrishnan V, Bang SS (2003) Microbiologically induced sealant for concrete crack remediation. In: Proceedings of 16th engineering mechanics conference, Seattle

    Google Scholar 

  • De Muynck W, Cox K, De Belie N, Verstraete W (2008a) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22(5):875–885

    Article  Google Scholar 

  • De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008b) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem Concr Res 38(7):1005–1014

    Article  Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Article  Google Scholar 

  • Decho AW (2010) Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol Eng 36:137–144

    Article  Google Scholar 

  • DeJong JT, Fritzges MB, Nusslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron 132(11):1381–1392

    Article  Google Scholar 

  • Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17(4):357–367

    Article  Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26(2):79–88

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Process of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  Google Scholar 

  • Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth Sci Rev 45(1–2):45–60

    Article  Google Scholar 

  • Ercole C, Cacchio P, Botta AL, Centi V, Lepidi A (2007) Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides. Microsc Microanal 13:42–50

    Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328

    Article  Google Scholar 

  • Ferris FG, Stehmeier LG (1992) Bacteriogenic mineral plugging. USA Patent US5143155

    Google Scholar 

  • Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. Rev Mineral 35:161–180

    Google Scholar 

  • Friis AK, Davis TA, Figueira MM, Paquette J, Mucci A (2003) Influence of bacillus subtilis cell walls and EDTA on calcite dissolution rates and crystal surface features. Environ Sci Technol 37:2376–2382

    Article  Google Scholar 

  • Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J 17(4):305–318

    Article  Google Scholar 

  • Fujita Y, Redden GD, Ingram JC, Cortez MM, Ferris FG, Smith RW (2004) Strontium incorporation into calcite generated by bacterial ureolysis. Geochim Cosmochim Acta 68(15):3261–3270

    Article  Google Scholar 

  • Gaylarde C, Ribas SM, Warscheid T (2003) Microbial impact on building materials: an overview. Mater Struct 36(3):342–352

    Article  Google Scholar 

  • Ghosh P, Mandal S, Chattopadhyay B, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35:1980–1983

    Article  Google Scholar 

  • Ghosh P, Biswas M, Chattopadhyay B, Mandal S (2009) Microbial activity on the microstructure of bacteria modified mortar. Cem Concr Compos 31:93–98

    Article  Google Scholar 

  • Gollapudi UK, Knutson CL, Bang SS, Islam MR (1995) A new methodbfor controlling leaching through permeable channels. Chemosphere 30(4):695–705

    Article  Google Scholar 

  • Grabiec A, Klama J, Zawal D, Krupa D (2012) Modification of recycled concrete aggregate by calcium carbonate biodeposition. Constr Build Mater 34:145–150

    Article  Google Scholar 

  • Guadalupe M, Sierra-Beltran, Jonkers HM, Schlangen E (2014) Characterization of sustainable bio-based mortar for concrete repair. Constr Build Mater. http://dx.doi.org/10.1016/j.conbuildmat.2014.01.012

  • Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    Article  Google Scholar 

  • Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD (2003a) Strainspecific ureolytic microbial calcium carbonate precipitation. Appl Environ Microbiol 69(8):4901–4909

    Article  Google Scholar 

  • Hammes F, Seka A, de Knijf S, Verstraete W (2003b) A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res 37(3):699–704

    Article  Google Scholar 

  • Jiang W, Saxena A, Bongkeun S, Ward BB, Beveridge TJ, Myneni CB (2004) Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20:11433–11442

    Article  Google Scholar 

  • Jonkers H (2007) Self healing concrete: a biological approach. In: van der Zwaag S (ed) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Netherlands, pp 195–204

    Chapter  Google Scholar 

  • Jonkers HM, Thijssen A, Muyzer G (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36(2):230–235

    Article  Google Scholar 

  • Kantzas A, Ferris FG, Jha KN, Mourits FM (1992) A novelmethod of sand consolidation through bacteriogenic mineral plugging. In: Proceedings of CIM annual technical conference, Calgary

    Google Scholar 

  • Kim HK, Park SJ, Han JI, Lee HK (2013) Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Constr Build Mater 38:1073–1082

    Google Scholar 

  • Kucharski ES, Cord-Ruwisch R, Whiffin V, Al-Thawadi SMJ (2006) Microbial biocementation. World intellectual property organization, WO2006/066326 A1

    Google Scholar 

  • Lappin-Scott HM, Cusack F, Costerton JW (1988) Nutrient resuscitation and growth of starved cells in sandstone cores: a novel approach to enhanced oil recovery. Appl Environ Microbiol 54(6):1373–1382

    Google Scholar 

  • Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthuisot JP (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126(1–4):25–34

    Article  Google Scholar 

  • Li PH, Jin B (2012) Healing of cracked concrete by Sporosarcina pasteurii mediated carbonate deposition. Appl Mech Mater 164:103–106

    Google Scholar 

  • Li P, Qu W (2012) Microbial carbonate mineralization as an improvement method for durability of concrete structures. Adv Mater Res 365:280–286

    Article  Google Scholar 

  • Little BJ, Wagner PA, Lewandowski Z (1997) Spatial relationship between bacteria and mineral surfaces. Rev Mineral 35:123–159

    Google Scholar 

  • MacLeod A, Lappin-Scott HM, Costerton JW (1988) Plugging of a model rock system by using starved bacteria. Appl Environ Microbiol 54:1365–1372

    Google Scholar 

  • McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42(1–2):95–117

    Article  Google Scholar 

  • Moon HY, Shin DG, Choi DS (2007) Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system. Constr Build Mater 21(2):362–369

    Article  Google Scholar 

  • Morita R (1980) Calcite precipitation by marine bacteria. Geomicrobiol J 2:63–82

    Article  Google Scholar 

  • Moropoulou A, Kouloumbi N, Haralampopoulos G, Konstanti A, Michailidis P (2003) Criteria and methodology for the evaluation of conservation interventions on treated porous stone susceptible to salt decay. Prog Org Coat 48:259–270

    Article  Google Scholar 

  • Morse JW (1983) The kinetics of calcium carbonate dissolution and precipitation. In: Reeder RJ (ed.) Carbonates: mineralogy and chemistry, vol. 11. Mineralogic Society of America, Washington,, pp 227–264

    Google Scholar 

  • Muynck D, De Belie W, Verstraete NW (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136

    Article  Google Scholar 

  • Nemati M, Voordouw G (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme Microb Technol 33(5):635–642

    Article  Google Scholar 

  • Nemati M, Greene EA, Voordouw G (2005) Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option. Process Biochem 40(2):925–933

    Article  Google Scholar 

  • Nielsen TH, Bonde TA, Sorensen J (1998) Significance of microbial urea turnover in Ncycling of three Danish agricultural soils. FEMS Microbiol Ecol 25(2):147–157

    Article  Google Scholar 

  • Okwadha G, Li J (2011) Biocontainment of polychlorinated biphenyls (PCBs) on flat concrete surfaces by microbial carbonate precipitation. J Environ Manage 92:2860–2864

    Article  Google Scholar 

  • Pacheco-Torgal F, Labrincha JA (2013) Biotech cementitious materials: some aspects of an innovative approach for concrete with enhanced durability. Constr Build Mater 40:1136–1141

    Google Scholar 

  • Park SJ, Park YM, Chun WY, Kim WJ, Ghim SY (2010) Calcite-forming bacteria for compressive strength improvement in mortar. J Microbiol Biotechnol 20:782–788

    Google Scholar 

  • Pei Ruoting, Liu Jun, Wang Shuangshuang, Yang Mijia (2013) Use of bacterial cell walls to improve the mechanical performance of concrete. Cem Concr Compos 39:122–130

    Article  Google Scholar 

  • Perito B, Mastromei G (2011) Molecular basis of bacterial calcium carbonate precipitation W.E.G. In: Muller (ed.) Molecular biomineralization, progress in molecular and subcellular Biology 52. doi:10.1007/978-3-642-21230-7_5

  • Qian CX, Wang JY, Wang RX (2009) Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Mater Sci Eng 29(4):1273–1280

    Article  Google Scholar 

  • Qian C, Wang R, Cheng L, Wang J (2010a) Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chin J Chem 28:847–857

    Article  Google Scholar 

  • Qian CX, Pan QF, Wang RX (2010b) China Tech Sci 53:2198–2206

    Google Scholar 

  • Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J 98:3–9

    Google Scholar 

  • Ramakrishnan SK, Panchalan RK, Bang SS (2001) Improvement of concrete durability by bacterial mineral precipitation. In: 11th International conference on Fracture, Turin, Italy

    Google Scholar 

  • Reddy S, Rao M, Aparna P, Sasikala C (2010) Performance of standard grade bacterial (bacillus subtilis) concrete. Asian J Civ Eng (Build Housing) 11:43–55

    Google Scholar 

  • Reddy MS, Achal V, Mukherjee A (2012) Microbial concrete, a wonder metabolic product that remediates the defects in building structures. In: Satyanarayana T, et al (eds.) Bacteria in environmental management: microbes and environment. doi:10.1007/978-94-007-2229-3_24

  • Rivadeneyra MA, Delgado R, del Moral A, Ferrer MR, Ramos-Cormenzana A (1994) Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol Ecol 13(3):197–204

    Article  Google Scholar 

  • Rivadeneyra MA, Parraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquidmedia with different salinities. FEMS Microbiol Ecol 48:39–46

    Article  Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Ben CK (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microb 69(4):2182-2193

    Google Scholar 

  • Rong H, Qian CX, Li LZ (2012) Study on microstructure and properties of sandstone cemented by microbe cement. Constr Build Mater 36:687–694

    Google Scholar 

  • Siddique R, Kaur Chahal N (2011) Effect of ureolytic bacteria on concrete properties. Constr Build Mater 25:3791–3801

    Article  Google Scholar 

  • Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571

    Google Scholar 

  • Tiano P (1995) Stone reinforcement by calcite crystal precipitation induced by organic matrix macromolecules. Stud Conserv 40(3):171–176

    Article  Google Scholar 

  • Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36(1–2):139–145

    Article  Google Scholar 

  • Tiano P, Cantisani E, Sutherland I, Paget JM (2006) Biomediated reinforcement of weathered calcareous stones. J Cult Herit 7(1):49–55

    Article  Google Scholar 

  • Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40:157–166

    Article  Google Scholar 

  • Von Knorre H, Krumbein WE (2000) Bacterial calcification. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 25–31

    Chapter  Google Scholar 

  • Wang J, De Belie N, Verstraete W (2012a) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39:567–577

    Article  Google Scholar 

  • Wang J, Van Tittelboom K, De Belie N, Verstraete W (2012b) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 26:532–540

    Article  Google Scholar 

  • Wang JY, Soens H, Verstraete W, De Belie N (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res 56:139–152

    Article  Google Scholar 

  • Warren LA, Maurice PA, Parmar N, Ferris FG (2001) Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J 18:93–125

    Article  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368

    Article  Google Scholar 

  • Weiner S, Dove PM (2003) An overview of biomineralization and the problem of the vital effect. Am Rev Mineral Geochem 54:1–31

    Article  Google Scholar 

  • Whiffin VS, van Paassen L, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24:417–423

    Article  Google Scholar 

  • Wiktor V, Jonkers H (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33:763–770

    Article  Google Scholar 

  • Zavarzin GA (2002) Microbial geochemical calcium cycle. Microbiol Transl Mikrobiologiya 71:1–17

    Google Scholar 

  • Zhong L, Islam MR (1995) A newmicrobial plugging process and its impact on fracture remediation. In: Proceedings of Society of Petroleum Engineers. Annual Technical Conference, Dallas, Texas, pp 703–715

    Google Scholar 

Download references

Acknowledgment

Financial supports from Natural Science Foundation of China (No. 51008281), the China postdoctoral science Foundation (No. 2012M510119), and National Basic Research Program of China (No. 2009CB623200) are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peihao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, P., Qu, W. (2015). Bacteria for Concrete Surface Treatment. In: Pacheco Torgal, F., Labrincha, J., Diamanti, M., Yu, CP., Lee, H. (eds) Biotechnologies and Biomimetics for Civil Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-09287-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09287-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09286-7

  • Online ISBN: 978-3-319-09287-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics