Skip to main content

MPIDepQBF: Towards Parallel QBF Solving without Knowledge Sharing

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2014 (SAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8561))

Abstract

Inspired by recent work on parallel SAT solving, we present a lightweight approach for solving quantified Boolean formulas (QBFs) in parallel. In particular, our approach uses a sequential state-of-the-art QBF solver to evaluate subformulas in working processes. It abstains from globally exchanging information between the workers, but keeps learnt information only locally. To this end, we equipped the state-of-the-art QBF solver DepQBF with assumption-based reasoning and integrated it in our novel solver MPIDepQBF as backend solver. Extensive experiments on standard computers as well as on the supercomputer Tsubame show the impact of our approach.

Partially supported by the Austrian Science Fund (FWF) under grants S11408-N23 and S11409-N23, by the Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) under grant ICT10-018, and by the Japan Society for the Promotion of Science (JSPS) as KAKENHI No. 25106501.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. Journal on Satisfiability, Boolean Modeling and Computation 5(1-4), 133–191 (2008)

    MathSciNet  Google Scholar 

  2. Biere, A.: Lingeling, Plingeling and Treengeling Entering the SAT Competition 2013. In: Proc. of the SAT Competition 2013. Dep. of Computer Science Series of Publications B, University of Helsinki, vol. B-2013-1, pp. 51–52 (2013)

    Google Scholar 

  3. Biere, A., Lonsing, F., Seidl, M.: Blocked Clause Elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Büning, H.K., Bubeck, U.: Theory of Quantified Boolean Formulas. In: Handbook of Satisfiability, pp. 735–760. IOS Press (2009)

    Google Scholar 

  5. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean Formulas. Information and Computation 117(1), 12–18 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feldmann, R., Monien, B., Schamberger, S.: A Distributed Algorithm to Evaluate Quantified Boolean Formulae. In: Proc. of the 17th Nat. Conference on Artificial Intelligence (AAAI 2000), pp. 285–290. AAAI (2000)

    Google Scholar 

  7. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with Quantified Boolean Formulas. In: Handbook of Satisfiability, pp. 761–780. IOS Press (2009)

    Google Scholar 

  8. Giunchiglia, E., Marin, P., Narizzano, M.: QuBE7.0. Journal on Satisfiability, Boolean Modeling and Computation 7(2-3), 83–88 (2010)

    Google Scholar 

  9. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas. Journal of Artificial Intelligence Research 26(1), 371–416 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Goultiaeva, A., Bacchus, F.: Recovering and Utilizing Partial Duality in QBF. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 83–99. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with Counterexample Guided Refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Lewis, M., Schubert, T., Becker, B.: QMiraXT – a multithreaded QBF solver. In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, MBMV (2009)

    Google Scholar 

  13. Lewis, M., Schubert, T., Becker, B., Marin, P., Narizzano, M., Giunchiglia, E.: Parallel QBF Solving with Advanced Knowledge Sharing. Fundamenta Informaticae 107(2-3), 139–166 (2011)

    MathSciNet  Google Scholar 

  14. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. Journal on Satisfiability, Boolean Modeling and Computation 7, 71–76 (2010)

    Google Scholar 

  15. Lonsing, F., Egly, U., Van Gelder, A.: Efficient Clause Learning for Quantified Boolean Formulas via QBF Pseudo Unit Propagation. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Marin, P., Miller, C., Lewis, M., Becker, B.: Verification of partial designs using incremental QBF solving. In: Proc. of the Int. Conf on Design, Automation & Test in Europe (DATE 2012), pp. 623–628. IEEE (2012)

    Google Scholar 

  17. Marin, P., Narizzano, M., Giunchiglia, E., Lewis, M.D.T., Schubert, T., Becker, B.: Comparison of knowledge sharing strategies in a parallel QBF solver. In: Proc. of the Int. Conf. on High Performance Computing & Simulation (HPCS 2009), pp. 161–167. IEEE (2009)

    Google Scholar 

  18. Mota, B.D., Nicolas, P., Stéphan, I.: A new parallel architecture for QBF tools. In: Proc. of the Int. Conf. on High Performance Computing and Simulation (HPCS 2010), pp. 324–330. IEEE (2010)

    Google Scholar 

  19. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Vautard, J., Lallouet, A., Hamadi, Y.: A parallel solving algorithm for quantified constraints problems. In: Proc. of the 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2010), pp. 271–274. IEEE Computer Society (2010)

    Google Scholar 

  21. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jordan, C., Kaiser, L., Lonsing, F., Seidl, M. (2014). MPIDepQBF: Towards Parallel QBF Solving without Knowledge Sharing. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09284-3_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09283-6

  • Online ISBN: 978-3-319-09284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics