Solving MaxSAT and #SAT on Structured CNF Formulas

  • Sigve Hortemo Sæther
  • Jan Arne Telle
  • Martin Vatshelle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8561)

Abstract

In this paper we propose a structural parameter of CNF formulas and use it to identify instances of weighted MaxSAT and #SAT that can be solved in polynomial time. Given a CNF formula we say that a set of clauses is projection satisfiable if there is some complete assignment satisfying these clauses only. Let the ps-value of the formula be the number of projection satisfiable sets of clauses. Applying the notion of branch decompositions to CNF formulas and using ps-value as cut function, we define the ps-width of a formula. For a formula given with a decomposition of polynomial ps-width we show dynamic programming algorithms solving weighted MaxSAT and #SAT in polynomial time. Combining with results of ’Belmonte and Vatshelle, Graph classes with structured neighborhoods and algorithmic applications, Theor. Comput. Sci. 511: 54-65 (2013)’ we get polynomial-time algorithms solving weighted MaxSAT and #SAT for some classes of structured CNF formulas. For example, we get \({\mathcal O}(m^2(m + n)s)\) algorithms for formulas F of m clauses and n variables and total size s, if F has a linear ordering of the variables and clauses such that for any variable x occurring in clause C, if x appears before C then any variable between them also occurs in C, and if C appears before x then x occurs also in any clause between them. Note that the class of incidence graphs of such formulas do not have bounded clique-width.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for# sat and bayesian inference. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 340–351. IEEE (2003)Google Scholar
  2. 2.
    Belmonte, R., Vatshelle, M.: Graph classes with structured neighborhoods and algorithmic applications. Theor. Comput. Sci. 511, 54–65 (2013)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, Monographs on Discrete Mathematics and Applications, vol. 3. SIAM Society for Industrial and Applied Mathematics, Philadelphia (1999)CrossRefGoogle Scholar
  4. 4.
    Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars. Comb. 67 (2003)Google Scholar
  5. 5.
    Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: H-join decomposable graphs and algorithms with runtime single exponential in rankwidth. Discrete Applied Mathematics 158(7), 809–819 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical Computer Science 412(39), 5187–5204 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Courcelle, B.: Clique-width of countable graphs: a compactness property. Discrete Mathematics 276(1-3), 127–148 (2004)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Darwiche, A.: Recursive conditioning. Artificial Intelligence 126(1), 5–41 (2001)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–529 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Ganian, R., Hlinený, P., Obdrzálek, J.: Better algorithms for satisfiability problems for formulas of bounded rank-width. Fundam. Inform. 123(1), 59–76 (2013)MATHGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)Google Scholar
  12. 12.
    Geelen, J.F., Gerards, B., Whittle, G.: Branch-width and well-quasi-ordering in matroids and graphs. J. Combin. Theory Ser. B 84(2), 270–290 (2002)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. Journal of Graph Theory 46(4), 313–327 (2004)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hvidevold, E.M., Sharmin, S., Telle, J.A., Vatshelle, M.: Finding good decompositions for dynamic programming on dense graphs. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 219–231. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Jaumard, B., Simeone, B.: On the complexity of the maximum satisfiability problem for horn formulas. Inf. Process. Lett. 26(1), 1–4 (1987)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kaski, P., Koivisto, M., Nederlof, J.: Homomorphic hashing for sparse coefficient extraction. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 147–158. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Müller, H.: Recognizing interval digraphs and interval bigraphs in polynomial time. Discrete Applied Mathematics 78(1-3), 189–205 (1997)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Paulusma, D., Slivovsky, F., Szeider, S.: Model counting for CNF formulas of bounded modular treewidth. In: Portier, N., Wilke, T. (eds.) STACS. LIPIcs, vol. 20, pp. 55–66. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)Google Scholar
  19. 19.
    Rafiey, A.: Recognizing interval bigraphs by forbidden patterns. CoRR abs/1211.2662 (2012)Google Scholar
  20. 20.
    Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT problem. Inf. Process. Lett. 65(1), 1–6 (1998)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Robertson, N., Seymour, P.D.: Graph minors X. obstructions to tree-decomposition. J. Combin. Theory Ser. B 52(2), 153–190 (1991)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Roth, D.: A connectionist framework for reasoning: Reasoning with examples. In: Clancey, W.J., Weld, D.S. (eds.) AAAI/IAAI, vol. 2, pp. 1256–1261. AAAI Press / The MIT Press (1996)Google Scholar
  23. 23.
    Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Slivovsky, F., Szeider, S.: Model counting for formulas of bounded clique-width. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC2013. LNCS, vol. 8283, pp. 677–687. Springer, Heidelberg (2013)Google Scholar
  25. 25.
    Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Vatshelle, M.: New width parameters of graphs. Ph.D. thesis. The University of Bergen (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sigve Hortemo Sæther
    • 1
  • Jan Arne Telle
    • 1
  • Martin Vatshelle
    • 1
  1. 1.Department of InformaticsUniversity of BergenNorway

Personalised recommendations