Advertisement

Dominant Controllability Check Using QBF-Solver and Netlist Optimizer

  • Tamir Heyman
  • Dan Smith
  • Yogesh Mahajan
  • Lance Leong
  • Husam Abu-Haimed
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8561)

Abstract

This paper presents an application of formal methods to the verification of hardware power management modules. The property being verified is called Dominant Controllability and is a property of a netlist node and a subset of the inputs. The property holds if there exists an assignment to the subset of the inputs such that it sets the node to 0/1 regardless of the values at the rest of the inputs. Verification of power management modules in recent CPU and GPU designs includes hundreds of such properties. Two approaches are described for verifying such properties: netlist optmization and QBF solving. In the latter case, a QBF preprocessor is used, requiring partial model reconstruction. Each method can be used independently or combined into a third algorithm that heuristically selects a method based on its performance on a design. Experimental results for these methods are presented and discussed.

Keywords

Controllability QBF QBF Preprocessor Netlist Optimizer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    QDIMACS Standard Version 1.1 (released on December 21, 2005)Google Scholar
  2. 2.
    Abramovici, M., Breuer, M.A., Friedman, A.D.: Digital Systems Testing and Testable Design. Computer Science Press (1990)Google Scholar
  3. 3.
    Biere, A., Lonsing, F., Seidl, M.: Blocked Clause Elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Brummayer, R., Lonsing, F., Biere, A.: Automated Testing and Debugging of SAT and QBF Solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 44–57. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Darringer, J.A., Joyner Jr., W.H., Berman, C.L., Trevillyan, L.: Logic Synthesis Through Local Transformations. IBM Journal of Research and Development 25(4), 272–280 (1981)CrossRefGoogle Scholar
  6. 6.
    Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An Effective Preprocessor for QBFs based on Equivalence Reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Goultiaeva, A., Van Gelder, A., Bacchus, F.: A Uniform Approach for Generating Proofs and Strategies for Both True and False QBF Formulas. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 1, pp. 546–553. AAAI Press (2011)Google Scholar
  8. 8.
    Janota, M., Grigore, R., Marques-Silva, J.: On QBF Proofs and Preprocessing. CoRR abs/1310.2491 (2013)Google Scholar
  9. 9.
    Järvisalo, M., Biere, A.: Reconstructing Solutions After Blocked Clause Elimination. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 340–345. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Kuehlmann, A.: Dynamic Transition Relation Simplification for Bounded Property Checking. In: ICCAD, pp. 50–57. IEEE Computer Society / ACM (2004)Google Scholar
  11. 11.
    Lonsing, F., Biere, A.: Integrating Dependency Schemes in Search-based QBF Solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Marin, P., Miller, C., Lewis, M., Becker, B.: Verification of Partial Designs Using Incremental QBF Solving. In: Design, Automation Test in Europe Conference Exhibition DATE 2012, pp. 623–628 (March 2012)Google Scholar
  13. 13.
    Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to Combinational Equivalence Checking. In: ICCAD, pp. 836–843 (2006)Google Scholar
  14. 14.
    Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based Certificate Extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Yu, Y., Malik, S.: Validating the Result of a Quantified Boolean Formula (QBF) Solver: Theory and Practice. In: Tang, T. (ed.) ASP-DAC, pp. 1047–1051. ACM Press (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tamir Heyman
    • 1
  • Dan Smith
    • 2
  • Yogesh Mahajan
    • 2
  • Lance Leong
    • 2
  • Husam Abu-Haimed
    • 3
  1. 1.NVIDIA IncBeavertonUSA
  2. 2.NVIDIA IncSanta ClaraUSA
  3. 3.Atrenta IncSanta ClaraUSA

Personalised recommendations