Advertisement

The Energy Intensity of the Internet: Edge and Core Networks

  • Daniel SchienEmail author
  • Vlad C. Coroama
  • Lorenz M. Hilty
  • Chris Preist
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 310)

Abstract

Environmental assessments of digital services seeking to take into account the Internet’s energy footprint typically require models of the energy intensity of the Internet. Existing models have arrived at conflicting results. This has lead to increased uncertainty and reduced comparability of assessment results. We present a bottom-up model for the energy intensity of the Internet that draws from the current state of knowledge in the field and is specifically directed towards assessments of digital services. We present the numeric results and explain the application of the model in practice. Complementing the previous chapter that presented a generic approach and results for access networks and customer premise equipment, we present a model to assess the energy intensity of the core networks, yielding the result of 0.052 kWh/GB.

Keywords

Internet Energy efficiency Energy intensity Video streaming Online news 

References

  1. 1.
    Moberg, Å., Johansson, M., Finnveden, G., Jonsson, A.: Printed and tablet e-paper newspaper from an environmental perspective—a screening life cycle assessment. Environ. Impact Assess. Rev. 30, 177–191 (2010)CrossRefGoogle Scholar
  2. 2.
    Weber, C.L., Koomey, J.G., Matthews, H.S.: The energy and climate change implications of different music delivery methods. J. Ind. Ecol. 14, 754–769 (2010)CrossRefGoogle Scholar
  3. 3.
    Williams, D.R., Tang, Y., Daniel, R.: Williams: a methodology to model the energy and greenhouse gas emissions of electronic software distributions. Environ. Sci. Technol. 46, 1087–1095 (2011)CrossRefGoogle Scholar
  4. 4.
    Schien, D., Shabajee, P., Preist, C., Wood, S.G.: A model for green design of online news media services. In: World Wide Web Conference WWW2013, Rio de Janeiro, pp. 1111–1121 (2013)Google Scholar
  5. 5.
    Coroama, V.C., Hilty, L.M.: Assessing internet energy intensity: a review of methods and results. Environ. Impact Assess. Rev. 45, 63–68 (2014)CrossRefGoogle Scholar
  6. 6.
    GHG Protocol: GHG protocol product life cycle accounting and reporting standard ICT sector guidance. http://www.ghgprotocol.org/feature/ghg-protocol-product-life-cycle-accounting-and-reporting-standard-ict-sector-guidance
  7. 7.
    ITU: L.1420—Methodology for energy consumption and greenhouse gas emissions impact assessment of information and communication technologies in organizations (2012)Google Scholar
  8. 8.
    Iannone, E.: Telecommunication Networks. CRC, New York (2011)Google Scholar
  9. 9.
    Paraschis, L., Gerstel, O., Frankel, M.Y.: Metro networks: services and technologies. In: Li, I.P.K.T. and Willner, A.E. (eds.) Optical Fiber Telecommunications V B: systems and networks. Academic, Burlington, MA (2008)Google Scholar
  10. 10.
    Doverspike, R.D., Ramakrishnan, K.K., Chase, C.: Structural overview of ISP networks. In: Kalmanek, C.R., Misra, S., Yang, Y. (eds.) Guide to Reliable Internet Services and Applications. Springer, London (2010)Google Scholar
  11. 11.
    Schien, D.: Generic bottom up model gist. http://nbviewer.ipython.org/gist/dschien/24bbb049ba9be347fc22 (2014)
  12. 12.
    Coroama, V.C., Hilty, L.M., Heiri, E., Horn, F.M.: The direct energy demand of internet data flows. J. Ind. Ecol. 17, 680–688 (2013)Google Scholar
  13. 13.
    Kilper, D.C., Atkinson, G., Korotky, S.K., Goyal, S., Vetter, P., Suvakovic, D., Blume, O.: Power trends in communication networks. IEEE J. Sel. Top. Quantum Electron. 17, 275–284 (2011)CrossRefGoogle Scholar
  14. 14.
    Baliga, J., Ayre, R., Hinton, K., Sorin, W.V., Tucker, R.S.: Energy consumption in optical IP networks. J. Lightwave Technol. 27, 2391–2403 (2009)CrossRefGoogle Scholar
  15. 15.
    van Heddeghem, W., Idzikowski, F., Vereecken, W., Colle, D., Pickavet, M., Demeester, P.: Power consumption modeling in optical multilayer networks. Photonic Netw. Commun. 24(2), 86–102 (2012)Google Scholar
  16. 16.
    Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. IEEE Comput. 40, 33–37 (2007)CrossRefGoogle Scholar
  17. 17.
    Hlavacs, H., da Costa, G., Pierson, J.-M.: Energy consumption of residential and professional switches. In: Proceedings of the 2009 International Conference on Computational Science and Engineering, pp. 240–246 (2009)Google Scholar
  18. 18.
    Coroama, V.C., Schien, D., Preist, C., Hilty, L.M.: The energy intensity of the Internet: home and access networks. In: Hilty, L., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 137–155. Springer, Switzerland (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daniel Schien
    • 1
    Email author
  • Vlad C. Coroama
    • 2
  • Lorenz M. Hilty
    • 3
    • 4
    • 5
  • Chris Preist
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolBristolUK
  2. 2.Measure-IT ResearchBucharestRomania
  3. 3.Department of InformaticsUniversity of ZurichZurichSwitzerland
  4. 4.Empa, Swiss Federal Laboratories for Materials Science and TechnologySt. GallenSwitzerland
  5. 5.Centre for Sustainable Communications CESCKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations