The Material Basis of ICT

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 310)


Technologies for storing, transmitting, and processing information have made astounding progress in dematerialization. The amount of physical mass needed to represent one bit of information has dramatically decreased in the last few years, and is still declining. However, information will always need a material basis. In this chapter, we address both the upstream (from mining to the product) and the downstream (from the product to final disposal) implications of the composition of an average Swiss end-of-life (EoL) consumer ICT device from a materials perspective. Regarding the upstream implications, we calculate the scores of the MIPS material rucksack indicator and the ReCiPe mineral resource depletion indicator for selected materials contained in ICT devices, namely polymers, the base metals Al, Cu, and Fe, and the geochemically scarce metals Ag, Au, and Pd. For primary production of one kg of raw material found in consumer ICT devices, the highest material rucksack and resource depletion scores are obtained for the three scarce metals Ag, Au, and Pd; almost the entire material rucksack for these metals is determined by the mining and refining processes. This picture changes when indicator scores are scaled to their relative mass per kg average Swiss EoL consumer ICT device: the base metals Fe and in particular Cu now score much higher than the scarce metals for both indicators. Regarding the downstream implications, we determine the effects of a substitution of primary raw materials in ICT devices with secondary raw materials recovered from EoL consumer ICT devices on both indicator scores. According to our results, such a substitution leads to benefits which are highest for the base metals, followed by scarce metals. The recovery of secondary raw materials from EoL consumer ICT devices can significantly reduce the need for primary raw materials and subsequently the material rucksacks and related impacts. However, increased recycling is not a panacea: the current rapid growth of the materials stock in the technosphere necessitates continuous natural resource depletion, and recycling itself is ultimately limited by thermodynamics.


ICT Material rucksack Mineral resource depletion Scarce metals Materials recovery 


  1. 1.
    SWICO Recycling: Activity Report. In. Zürich, Switzerland (2011)Google Scholar
  2. 2.
    Haig, S., Morrish, L., Morton, R., Wilkinson, S.: Electrical product material composition. Waste and Resources Action Programme, Branbury, Oxon (2012)Google Scholar
  3. 3.
    Müller, E., Widmer, R., Coroama, V., Orthlieb, P.: Material and energy flows and environmental impacts of the Internet in Switzerland. J. Ind. Ecol. 17(6), 814–826 (2013)CrossRefGoogle Scholar
  4. 4.
    Skinner, B.: Earth resources. Proc. Natl. Acad. Sci. USA. 76(9), 4212–4217 (1979)CrossRefGoogle Scholar
  5. 5.
    Johnson, J.: Dining at the periodic table: metals concentrations as they relate to recycling. Environ. Sci. Technol. 41(5), 1759–1765 (2007)CrossRefGoogle Scholar
  6. 6.
    Stamp, A., Wäger, P.A., Hellweg, S.: Linking energy scenarios with metal demand modeling—the case of indium in CIGS solar cells. Submitted to Resources, Conservation & Recycling (2014)Google Scholar
  7. 7.
    Hischier, R., Coroama V.C, D., S., Ahmadi Achachlouei, M.: Grey energy and environmental impacts of ICT hardware. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Springer, Germany (2014) (working Title)Google Scholar
  8. 8.
    Saurat, M., Ritthoff, C.: Calculating MIPS 2.0. Resources 2, 581–607 (2013)Google Scholar
  9. 9.
    Wäger, P.A., Lang, D.J., Wittmer, D., Bleischwitz, R., Hagelüken, C.: Towards a more sustainable use of scarce metals. a review of intervention options along the metals life cycle. GAIA 21(4), 300–309 (2012)Google Scholar
  10. 10.
    Erdmann, L., Graedel, T.E.: The criticality of non-fuel minerals: a review of major approaches and analyses. Environ. Sci. Technol. 45, 7620–7630 (2011). doi: 10.1021/es200563g CrossRefGoogle Scholar
  11. 11.
    Graedel, T.E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., Friedlander, E., Henly, C., Jun, C., Nassar, N.T., Schechner, D., Warren, S., Yang, M.-Y., Zhu, C.: Methodology of Metal criticality determination. Environ. Sci. Technol. 46(2), 1063–1070 (2012). doi: 10.1021/es203534z CrossRefGoogle Scholar
  12. 12.
    EC: Critical Raw Materials for the EU. Report of the Ad hoc Working Group on defining critical raw materials. In: European Commission (2010)Google Scholar
  13. 13.
    Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., de Schreyver, A., Struijs, J., Van Zelm, R.: ReCiPe 2008—A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised) / Report I: Characterisation. VROM—Ministry of Housing Spatial Planning and Environment, Den Haag (2012)Google Scholar
  14. 14.
    Guinee, J., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J.: Life cycle assessment. An operational guide to the ISO standards. Part 3: scientific background. Ministry of Housing, Spatial Planning and Environment (VROM) and Centrum voor Milieukunde (CML), Rijksuniversiteit, Den Haag and Leiden (2001)Google Scholar
  15. 15.
    Goedkoop, M., Spriensma, R.: Eco-indicator 99. A damage orientated method for Life Cycle Impact Assessment. Methodology Report. In., p. 132. PRé Consultants B.V., Amersfoort (2000)Google Scholar
  16. 16.
    Klinglmair, M., Serenella, S., Brandão, M.: Assessing resource depletion in LCA: a review of methods and methodological issues. Int. J. Life Cycle Assess. 18, 1036–1047 (2013)CrossRefGoogle Scholar
  17. 17.
    Ecoinvent Centre: ecoinvent data v3.01. Online Database available at In: ecoinvent Association, Zürich (2013)
  18. 18.
    Wäger, P.A., Schluep, M., Müller, E., Gloor, R.: RoHS regulated substances in mixed plastics from waste electrical and electronic equipment. Environ. Sci. Technol. 46(2), 628–635 (2012)CrossRefGoogle Scholar
  19. 19.
    Nakamura, S., Kondo, Y., Matsubae, K., Nakajima, K., Tasaki, T., Nagasaka, T.: Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality. Environ. Sci. Technol. 46, 9266–9273 (2012)CrossRefGoogle Scholar
  20. 20.
    Nakajima, K., Takeda, O., Miki, T., Matsubae, K., Nagasaka, T.: Thermodynamic analysis for the controllability of elements in the recycling process of metals. Environ. Sci. Technol. 45, 4929–4936 (2011)Google Scholar
  21. 21.
    SWICO Technical Inspectorate: Personal Communication Heinz Böni (2014)Google Scholar
  22. 22.
    Graedel, T.E.; Allwood, J., Birat; J.-P., Reck B.K.; Sibley, S.F.; Sonnemann, G.; Buchert, M.; Hagelüken, C.: UNEP: Recycling rates of metals—a status report. A report of the Working Group on the Global Flows to the International Resource Panel.(2011)Google Scholar
  23. 23.
    Hagelüken, C., Meskers, C.E.M.: Complex life cycles of precious and special Metals. In: Graedel, T., van der Voet, E. (eds.) Linkages of Sustainability, vol. 4. Strüngmann Forum Report. The MIT Press, Cambridge, MA (2010)Google Scholar
  24. 24.
    Chancerel, P., Meskers, C.E.M., Hagelüken, C., Rotter, V.S.: Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. J. Ind. Ecol. 13(5), 791–810 (2009)CrossRefGoogle Scholar
  25. 25.
    Zimmermann, T., Gößling-Reisemann, S.: Critical materials and dissipative losses: a screening study. Sci. Total Environ. 461–462, 774–780 (2013)CrossRefGoogle Scholar
  26. 26.
    Manhart, A.: International cooperation for metal recycling from waste electrical and electronic equipment: an assessment of the “best-of-two-worlds” approach. J. Ind. Ecol. 15(1), 13–30 (2011)CrossRefGoogle Scholar
  27. 27.
    Chancerel, P., Rotter, V.S., Ueberschaar, M., Marwede, M., Nissen, N.F., Lang, K.D.: Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment. Waste Manage. Res. 31(10 SUPPL.), 3–16 (2013)CrossRefGoogle Scholar
  28. 28.
    Schluep, M., Müller, E., Hilty, L.M., Ott, D., Widmer, R., Böni, H.: Insights from a decade of development cooperation in e-waste management. In: Paper presented at the Proceedings of the First International Conference on Information and Communication Technologies for Sustainability ETH Zurich, 14-16 Feb 2013Google Scholar
  29. 29.
    Wang, F., Huisman, J., Meskers, C.E.M., Schluep, M., Stevels, A.C.H.: The best-of-2-worlds philosophy: developing local dismantling and global infrastructure network for sustainable e-waste treatment in emerging economies. Waste Manag. 32, 2134–2146 (2012)Google Scholar
  30. 30.
    Böni, H., Schluep, M., Widmer, R.: Recycling of ICT equipment in industrialized and developing countries. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 223–241. Springer, Switzerland (2015)Google Scholar
  31. 31.
    Restrepo, E., Widmer, R., Wäger, P.A.: Improving recovery rates of scarce metals from waste electrical and electronic equipment (WEEE): an approach to optimize the pretreatment-recovery interface. Paper presented at the 3R International Scientific Conference on Material Cycles and Waste Management, Kyoto, 10–12 March, 2014. Google Scholar
  32. 32.
    Reuter, M.A., Hudson, C., van Schaik, A., Heiskanen, K., Meskers, C., Hagelüken, C.: UNEP: Metal Recycling: Opportunities, Limits, Infrastructure, A Report of the Working Group on the Global Metal Flows to the International Resource Panel. (2013)Google Scholar
  33. 33.
    Hilty, L.M.: Electronic Waste—an emerging risk?. Environ. Impact Assess. Rev. 25(5), 431–435Google Scholar
  34. 34.
    UN: Minamata Convention on Mercury. United Nations, Geneva (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.EmpaSwiss Federal Laboratories for Materials Science and TechnologySt. GallenSwitzerland

Personalised recommendations