Skip to main content

Grey Energy and Environmental Impacts of ICT Hardware

  • Conference paper
  • First Online:
ICT Innovations for Sustainability

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 310))

Abstract

Direct energy consumption of ICT hardware is only “half the story.” In order to get the “whole story,” energy consumption during the entire life cycle has to be taken into account. This chapter is a first step toward a more comprehensive picture, showing the “grey energy” (i.e., the overall energy requirements) as well as the releases (into air, water, and soil) during the entire life cycle of exemplary ICT hardware devices by applying the life cycle assessment method. The examples calculated show that a focus on direct energy consumption alone fails to take account of relevant parts of the total energy consumption of ICT hardware as well as the relevance of the production phase. As a general tendency, the production phase is more and more important the smaller (and the more energy-efficient) the devices are. When in use, a tablet computer is much more energy-efficient than a desktop computer system with its various components, so its production phase has a much greater relative importance. Accordingly, the impacts due to data transfer when using Internet services are also increasingly relevant the smaller the end-user device is, reaching up to more than 90 % of the overall impact when using a tablet computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The midpoint level is defined in [17] as being “at the place where mechanisms common to a variety of substances come into play”.

  2. 2.

    The endpoint level is defined in [17] as corresponding “to areas of protection that form the basis of decisions in policy and sustainable development”.

  3. 3.

    Two other LCI databases containing extensive information on electronics products are GaBi and EIME—but due to the high price of access to these data, they are not considered public databases in this article.

  4. 4.

    4.5 million. It seems more plausible that the likes of Google, Amazon and Facebook together own roughly 1/3 (and not only 1/10) of the Internet servers.

References

  1. Aebischer, B., Hilty, L.M.: The energy demand of ICT: a historical perspective and current methodological challenges. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 71–103. Springer, Switzerland (2015)

    Google Scholar 

  2. Schomaker, G., Janacek, S., Schlitt, D.: The energy demand of data centers. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 113–124. Springer, Switzerland (2015)

    Google Scholar 

  3. Coroama, V., Schien, D., Priest, C., Hilty, L.M.: The energy intensity of the Internet: home and access networks. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 137–155. Springer, Switzerland (2015)

    Google Scholar 

  4. Schien, D., Coroama, V., Hilty, L.M., Preist, C.: The energy intensity of the Internet: edge and core networks. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 157–170. Springer, Switzerland (2015)

    Google Scholar 

  5. Boustead, I., Hancock, G.F.: Handbook of Industrial Energy Analysis. Elis Hardwood Ltd, Chichester (1979)

    Google Scholar 

  6. VDI: VDI-Richtlinie 4600: Cumulative energy demand—Terms, definitions, methods of calculation. Beuth Publisher, Berlin, (1997)

    Google Scholar 

  7. Kasser, U., Pöll, M.: Ökologische Bewertung mit Hilfe der Grauen Energie. In: Schriftenreihe Umwelt No. 307. Bundesamt für Umwelt, Wald und Landschaft (BUWAL)/Swiss-EPA, Bern, (1999)

    Google Scholar 

  8. sia: Graue Energie von Gebäuden. In, vol. 2032. Swiss Society of Engineers and Architects (sia), Zürich, (2010)

    Google Scholar 

  9. Wäger, P., Hischier, R., Widmer, R.: The material basis of ICT. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 209–221. Springer, Switzerland (2015)

    Google Scholar 

  10. WCED: Our Common Future. In: World Commission on Environment and Development (WCED). Oxford Press, Oxford (1987)

    Google Scholar 

  11. Ness, B., Urbel-Piirsalu, E., Anderberg, S., Olsson, L.: Categorising tools for sustainability assessment. Ecol. Econ. 60, 498–508 (2007)

    Article  Google Scholar 

  12. ISO: Environmental Management—Life Cycle Assessment—Principles and Framework. In. International Standardization Organization (ISO), European Standard EN ISO 14’040, Geneva (2006)

    Google Scholar 

  13. Ayres, R.U.: Life cycle analysis: a critique. Resour. Conserv. Recycl. 14, 199–223 (1995)

    Article  Google Scholar 

  14. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B., Pennington, D.: Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and application. Environ. Int. 30, 701–720 (2004)

    Article  Google Scholar 

  15. ISO: Environmental Management—Life Cycle Assessment—Requirements and Guidelines. In. International Standardisation Organisation (ISO), European Standard EN ISO 14’044, Geneva (2006)

    Google Scholar 

  16. Pennington, D.W., Potting, J., Finnveden, G., Lindeijer, E., Jolliet, O., Rydberg, T., Rebitzer, G.: Life cycle assessment part 2: current impact assessment practice. Environ. Int. 30, 721–739 (2004)

    Article  Google Scholar 

  17. Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., de Schreyver, A., Struijs, J., van Zelm, R.: ReCiPe 2008—A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1st edn. Report I: Characterisation. In: VROM—Ministery of Housing Spatial Planning and Environment, Den Haag (2012)

    Google Scholar 

  18. Guinee, J., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J.: Life cycle assessment—an operational guide to the ISO standards. In: Centre of Environmental Sciences (CML). Leiden University, Leiden (2001)

    Google Scholar 

  19. Goedkoop, M., Spriensma, R.: Eco-indicator 99. A damage orientated method for life cycle impact assessment. In: Methodology Report. Pré Consultants B. V. Amersfoort (2000)

    Google Scholar 

  20. Klöpffer, W.: Defense of the cumulative energy demand. Int. J. Life Cycle Assess. 2(2), 61 (1997)

    Google Scholar 

  21. Huijbregts, M.A.J., Rombouts, L.J.A., Hellweg, S., Frischknecht, R., Hendriks, A.J., Van de Meent, D., Ragas, A.M.J., Reijnders, L., Struijs, J.: Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ. Sci. Technol. 40(3), 641–648 (2006). doi:10.1021/es051689g

    Article  Google Scholar 

  22. Frischknecht, R., Jungbluth, N., Althaus, H.-J., Doka, G., Dones, R., Hellweg, S., Hischier, R., Humbert, S., Margni, M., Nemecek, T., Spielmann, M.: Implementation of Life Cycle Impact Assessment Methods. Swiss Centre for Life Cycle Inventories, Dübendorf (2007)

    Google Scholar 

  23. Rhodes, S.P.: Applications of life cycle assessment in the electronics industry for product design and marketing claims. In: Proceedings of the IEEE International Symposium on Electronics and the Environment, pp. 101–105. Arlington (1993)

    Google Scholar 

  24. Hischier, R., Ahmadi Achachlouei, M., Hilty, L.M.: Evaluating the sustainability of electronic media: strategies for life cycle inventory data collection and their implications for LCA results. Environ. Model Softw. 56, 27–36 (2014)

    Article  Google Scholar 

  25. Arushanyan, Y., Ekener-Petersen, E., Finnveden, G.: Lessons learned—review of LCAs for ICT products and services. Comput. Ind. 65(2), 211–234 (2014)

    Google Scholar 

  26. Andrae, A.S.G., Andersen, O.: Life cycle assessments of consumer electronics—are they consistent? Int. J. Life Cycle Assess. 15(8), 827–836 (2010)

    Article  Google Scholar 

  27. Hischier, R., Classen, M., Lehmann, M., Scharnhorst, W.: Life Cycle Inventories of Electric and Electronic Equipment: Production, Use and Disposal. Swiss Centre for Life Cycle Inventories, Empa—TSL, Dübendorf (2007)

    Google Scholar 

  28. ecoinvent Centre: ecoinvent data v2.2. Swiss Centre for Life Cycle Inventories, Dübendorf (2010)

    Google Scholar 

  29. Hischier, R., Althaus, H.-J., Bauer, C., Doka, G., Frischknecht, R., Jungbluth, N., Nemecek, T., Simons, A., Stucki, M., Sutter, J., Tuchschmid, M.: In: Documentation of Changes Implemented in ecoinvent Data v2.1 and v2.2. Swiss Centre for Life Cycle Inventories, Dübendorf (2010)

    Google Scholar 

  30. Coroama, V., Hilty, L.M.: Assessing Internet energy intensity: a review of methods and results. Environ. Impact Assess. Rev. 45, 63–68 (2014). doi:10.1016/j.eiar.2013.12.004

    Article  Google Scholar 

  31. Coroama, V., Hilty, L.M., Heiri, E., Horn, F.: The direct energy demand of internet data flows. J. Ind. Ecol. 17, 680–688 (2013)

    Google Scholar 

  32. Coroama, V.C., Hilty, L.M., Birtel, M.: Effects of internet-based multiple-site conferences on greenhouse gas emissions. Telematics Inform. 4(29), 362–374 (2012)

    Article  Google Scholar 

  33. Müller, E., Widmer, R., Coroama, V.C., Orthlieb, A.: Material and energy flows and environmental impacts of the internet in Switzerland. J. Ind. Ecol. 17(6), 814–826 (2013). doi:10.1111/jiec.12056

    Article  Google Scholar 

  34. Lunden, D., Malmodin, J.: changes in environmental impacts over time in the fast developing ICT industry. Paper presented at the the 6th international conference on life cycle management, Gothenburg (2013)

    Google Scholar 

  35. ecoinvent Centre: ecoinvent data v3.01—Online Database—available at www.ecoinvent.org. ecoinvent Association, Zürich (2013)

  36. Allan, R.A.: A history of the personal computer. In: The People and the Technology. Allan Publishing, London, Ontario (2001)

    Google Scholar 

  37. Park, E., del Pobil, A.P.: Technology acceptance model for the use of tablet PCs. Wireless Pers. Commun. 73, 1561–1572 (2013). doi:10.1007/s11277-013-1266-x

    Article  Google Scholar 

  38. Hischier, R., Keller, M., Lisibach, R., Hilty, L.M.: Mat—an ICT application to support a more sustainable use of print products and ICT devices. In: Hilty, L.M., Aebischer, B., Andersson, G., Lohmann, W. (eds.) In: ICT4S 2013: Proceedings of the First International Conference on Information and Communication Technologies for Sustainability, pp. 223–230. ETH Zürich (2013)

    Google Scholar 

  39. Teehan, P., Kandlikar, M.: Sources of variation in life cycle assessments of desktop computers. J. Ind. Ecol. 16(S1), S182–S194 (2012). doi:10.1111/j.1530-9290.2011.00431.x

    Article  Google Scholar 

  40. IVF: Lot 3—Personal Computers (desktops and laptops) and Computer Monitors. Final Report (Task 1–8). In: European Commission DG TREN (ed.) Preparatory studies for Eco-design Requirements of EuPs (Contract TREN/D1/40-2005/LOT3/S07.56313). vol. IVF Report 07004. IVF (Industrial Research and Development Corporation), Mölndal (2007)

    Google Scholar 

  41. Kahhat, R., Poduri, S., Williams, E.: Bill of Attributes (BOA) in Life Cycle Modeling of Laptop Computers: Results and Trends from Disassembly Studies. Sustainability Consortium White Paper #103. The Sustainability Consortium, Arizona State University, and University of Arkansas, Tempe and Fayetteville (2011)

    Google Scholar 

  42. Apple: 15’’ MacBook Pro—Environmental Report. Apple Inc., Cupertino, CA (2010)

    Google Scholar 

  43. Herrmann, C.: Environmental footprint of ICT equipment in manufacture, use and end-of-life. Presentation held at ECOC, Brussels (2008)

    Google Scholar 

  44. Lu, L.-T., Wernick, I.K., Hsiao, T.-Y., Yu, Y.-H., Yang, Y.-M., Ma, H.-W.: Balancing the life cycle impacts of notebook computers: Taiwan’s experience. Resour. Conserv. Recycl. 48(1), 13–25 (2006)

    Article  Google Scholar 

  45. Tekawa, M., Miyamoto, S., Inaba, A.: Life cycle assessment; an approach to environmentally friendly PCs. In: Proceedings of the IEEE International Symposium on Electronics and the Environment, pp. 125–130. San Francisco, CA (1997)

    Google Scholar 

  46. Ahmadi Achachlouei, M., Moberg, A., Hochschorner, E.: Life cycle assessment of a magazine - part 1: tablet edition in emerging and mature states. J. Ind. Ecol. (Accepted for publication) (2014)

    Google Scholar 

  47. ZyXEL: Product Data Sheet NBG4615 v2 - Wireless N300 Gigabit NetUSB Router (2012)

    Google Scholar 

  48. Leuenberger, M., Frischknecht, R.: Life cycle assessment of virtual mobility. In: Implemented in ecoinvent data v2.2 (2010). ESU-services Ltd., Uster (2010)

    Google Scholar 

  49. Schien, D.: Excel Spreadsheet Network Device Statistics. Retrieved April 06, 2014, from http://www.cs.bris.ac.uk/home/schien/models/router_power_draw_201401.xlsx (2014)

  50. Koomey, J.G.: In: Growth in Data Center Electricity Use 2005–2010. A report by Analytics Press, completed at the request of The New York Times (2011)

    Google Scholar 

  51. Koomey, J.G.: Worldwide electricity used in data centers. Environ. Res. Lett. 3, 8 (2008). doi:10.1088/1748-9326/3/3/034008

    Article  Google Scholar 

  52. DCD Intelligence: Global Data Center Power 2013. http://www.dcd-intelligence.com/Products-Services/Open-Research/Global-Data-Center-Power-2013 (2014). Accessed 27 May 2014

  53. Malmodin, J., Lundén, D., Moberg, A., Andersson, G., Nilsson, M.: Life cycle assessment of ICT: carbon footprint and operational electricity use from the operator, national, and subscriber perspective in Sweden. J. Ind. Ecol. (2014). doi:10.1111/jiec.12145

  54. IDC: Press Release: Worldwide Server Market Rebounds Sharply in Fourth Quarter as Demand for x86 Servers and High-end Systems Leads the Way. http://www.idc.com/getdoc.jsp?containerId=prUS23974913 (2013). Accessed 27 May 2014

  55. Huber, A.: Eine Million Server für Microsoft im Einsatz. http://www.itmagazine.ch/Artikel/53562/Eine_Million_Server_fuer_Microsoft_im_Einsatz.html (2013). Accessed 28 March 2014

  56. Lorenz, M.: How Many Servers Worldwide? http://www.visioncloud.eu/content.php?s=191,324 (2011). Accessed 28 March 2014

  57. Miller, R.: Who hast the most web servers?. http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-web-servers/ (2013). Accessed 28 March 2014

  58. Nissen, N.F.: EuP preparatory study lot 6 standby and off-mode losses—task 3 consumer behaviour and local infrastructure. final report. In: Fraunhofer Institute for Reliability and Microintegration (IZM), Department Environmental Engineering, Berlin (2007)

    Google Scholar 

  59. Best, J.: Europe’s broadband 25 percent slower than ISPs promise. http://www.zdnet.com/europes-broadband-25-percent-slower-than-isps-promise-7000017312/ (2014). Accessed 21 Apr 2014

  60. Baliga, J., Ayre, R., Hinton, K., Sorin, W.V., Tucker, R.S.: Energy consumption in optical IP networks. J. Lightwave Technol. 27(13), 2391–2403 (2009). doi:10.1109/JLT.2008.2010142

    Article  Google Scholar 

  61. Cisco: Cisco Global Cloud Intex: Foecast and Methodology, 2010–2015. White paper. In. Cisco Systems, Inc., San Jose (2011)

    Google Scholar 

  62. Gossart, C.: Rebound effects and ICT: a review of the literature. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 435–448. Springer, Switzerland (2015)

    Google Scholar 

  63. Hischier, R., Wäger, P.: The transition from desktop computers to tablets: a model for increasing resource efficiency? In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 243–256. Springer, Switzerland (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Hischier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hischier, R., Coroama, V.C., Schien, D., Ahmadi Achachlouei, M. (2015). Grey Energy and Environmental Impacts of ICT Hardware. In: Hilty, L., Aebischer, B. (eds) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol 310. Springer, Cham. https://doi.org/10.1007/978-3-319-09228-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09228-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09227-0

  • Online ISBN: 978-3-319-09228-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics