Skip to main content

Uncovering Radiation Chemistry in the Solid State Through Periodic Density-Functional Calculations: Confrontation with Experimental Results and Beyond

  • Chapter
  • First Online:
Applications of EPR in Radiation Research

Abstract

Three questions are crucial to unravel the radiation chemistry of any solid-state molecular system: what is the structure of the radicals formed, how are they formed and why? Molecular modeling methods based on Density Functional Theory—in confrontation with experimental Electron Paramagnetic Resonance (EPR) results—can help in finding an answer to all three questions. In this contribution, one view on how to perform such computational research is presented, with emphasis on the application of a periodic approach to biomolecules such as amino acids and carbohydrates. General strategies are outlined and common pitfalls are indicated. Topics include: effect of level of theory, model space and temperature on calculated EPR properties, formation mechanisms of radiation-induced radicals, and reaction path simulations for radiochemical transformations. In three case studies, these principles are applied to several radiation-induced radicals of sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lund A, Shiotani M (2010) EPR of free radicals in solids: trends in methods and applications. Springer, Dordrecht

    Google Scholar 

  2. Heller C, McConnell HM (1960) Radiation damage in organic crystals. ii. electron spin resonance of (CO2H)CH2CH(CO2H) in β-succinic acid. J Chem Phys 32:1535–1540. doi:10.1063/1.1730955

    Article  CAS  Google Scholar 

  3. McConnell HM (1956) Indirect hyperfine interactions in the paramagnetic resonance spectra of aromatic free radicals. J Chem Phys 24:764–766. doi:10.1063/1.1742605

    Article  CAS  Google Scholar 

  4. Close DM, Bernhard WA (1977) INDO Calculations of spin-density distribution in pyrimidine electron adducts. J Chem Phys 66:5244–5245. doi:10.1063/1.433754

    Article  CAS  Google Scholar 

  5. Kaupp M, Bühl M, Malkin VG (2004) Calculation of NMR and EPR parameters: theory and applications. WILEY-VCH: Weinheim doi:10.1002/3527601678

    Google Scholar 

  6. CP2K. http://www.cp2k.org

  7. VandeVondele J, Krack M, Mohamed F et al (2005) QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167:103–128. doi:10.1016/j.cpc.2004.12.014

    Article  CAS  Google Scholar 

  8. De Cooman HP, Vrielinck H et al (2008) Identification and conformational study of stable radiation-induced defects in sucrose single crystals using density functional theory calculations of electron magnetic resonance parameters. J Phys Chem B 112:7298–7307. doi:10.1021/jp712004g

    Article  CAS  Google Scholar 

  9. De Cooman HP, Vrielinck H et al (2010) Oxidation and reduction products of X irradiation at 10 K in sucrose single crystals: radical identification by EPR, ENDOR, and DFT. J Phys Chem B 114:666–674. doi:10.1021/jp909247z

    Article  CAS  Google Scholar 

  10. De Cooman HK, Kusakovskij J et al (2013) Dominant stable radicals in irradiated sucrose: g tensors and contribution to the powder electron paramagnetic resonance spectrum. J Phys Chem B 117:7169–7178. doi:10.1021/jp400053h

    Article  CAS  Google Scholar 

  11. De Cooman HP, Vrielinck H et al (2009) ENDOR and HYSCORE analysis and DFT-assisted identification of the third major stable radical in sucrose single crystals X-irradiated at room temperature. Phys Chem Chem Phys 11:1105–1114. doi:10.1039/b816641b

    Article  CAS  Google Scholar 

  12. Vanhaelewyn G, Pauwels E, Callens FJ et al (2006) Q-band EPR and ENDOR of low temperature X-irradiated beta-D-fructose single crystals. J Phys Chem A 110:2147–2156. doi:10.1021/jp056632v

    Article  CAS  Google Scholar 

  13. De Cooman HV, Pauwels E et al (2008) Radiation-induced radicals in glucose-1-phosphate. I. Electron paramagnetic resonance and electron nuclear double resonance analysis of in situ X-irradiated single crystals at 77 K. J Phys Chem B 112:15045–15053. doi:10.1021/jp804290e

    Article  CAS  Google Scholar 

  14. Krivokapić A, Øhman KT, Nelson WH et al (2009) Primary oxidation products of 5-methylcytosine: methyl dynamics and environmental influences. J Phys Chem A 113:9633–9640. doi:10.1021/jp904747j

    Article  Google Scholar 

  15. Øhman KT, Sanderud A, Hole EO, Sagstuen E (2006) Single crystals of L-O-serine phosphate X-irradiated at low temperatures: EPR, ENDOR, EIE, and DFT studies. J Phys Chem A 110:9585–9596. doi:10.1021/jp061265o

    Article  Google Scholar 

  16. Declerck R, Pauwels E, Van Speybroeck V, Waroquier M (2006) First-principles calculations of hyperfine parameters with the Gaussian and augmented-plane-wave method: application to radicals embedded in a crystalline environment. Phys Rev B 74:8. doi:245103 10.1103/PhysRevB.74.245103

    Article  Google Scholar 

  17. Weber V, Iannuzzi M, Giani S et al (2009) Magnetic linear response properties calculations with the Gaussian and augmented-plane-wave method. J Chem Phys 131:11. doi:014106 10.1063/1.3156803

    Article  Google Scholar 

  18. Pauwels E, Van Speybroeck V, Waroquier M (2004) Evaluation of different model space approaches based on DFT to examine the EPR parameters of a radiation-induced radical in solid-state alpha-glycine. J Phys Chem A 108:11321–11332. doi:10.1021/jp049251a

    Article  CAS  Google Scholar 

  19. Hermosilla L, Calle P, de la VJMG, Sieiro C (2006) Density functional theory study of N-14 isotropic hyperfine coupling constants of organic radicals. J Phys Chem A 110:13600–13608. doi:10.1021/jp064900z

    Article  CAS  Google Scholar 

  20. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38, 27–28. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  21. Byrd RH, Lu PH, Nocedal J, Zhu CY (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16:1190–1208. doi:10.1137/0916069

    Article  Google Scholar 

  22. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  23. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  24. Lippert G, Hutter J, Parrinello M (1997) A hybrid Gaussian and plane wave density functional scheme. Mol Phys 92:477–487

    Article  CAS  Google Scholar 

  25. VandeVondele J, Hutter J (2007) Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys 127:9. doi:114105 10.1063/1.2770708

    Article  Google Scholar 

  26. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54:1703–1710

    Article  CAS  Google Scholar 

  27. Hartwigsen C, Goedecker S, Hutter J (1998) Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 58:3641–3662

    Article  CAS  Google Scholar 

  28. Krack M, Parrinello M (2000) All-electron ab-initio molecular dynamics. Phys Chem Chem Phys 2:2105–2112

    Article  CAS  Google Scholar 

  29. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Optimization of gaussian-type basis-sets for local spin-density functional calculations. 1. Boron through neon, optimization technique and validation. Can J Chem Can Chim 70:560–571

    Article  CAS  Google Scholar 

  30. Pauwels E, De Cooman H, Waroquier M et al (2010) On the identity of the radiation-induced stable alanine radical. Phys Chem Chem Phys 12:8733–8736. doi:10.1039/c004380j

    Article  CAS  Google Scholar 

  31. Aalbergsjo SG, Pauwels E, De Cooman H et al (2013) Structural specificity of alkoxy radical formation in crystalline carbohydrates. Phys Chem Chem Phys 15:9615–9619. doi:10.1039/c3cp50789k

    Article  CAS  Google Scholar 

  32. Pauwels E, Declerck R, Van Speybroeck V, Waroquier M (2008) Evidence for a Grotthuss-like mechanism in the formation of the rhamnose alkoxy radical based on periodic DFT calculations. Radiat Res 169:8–18

    Article  CAS  Google Scholar 

  33. Tarpan MA, De Cooman H, Sagstuen E et al (2011) Identification of primary free radicals in trehalose dihydrate single crystals X-irradiated at 10 K. Phys Chem Chem Phys 13:11294–11302. doi:10.1039/c0cp02616f

    Article  CAS  Google Scholar 

  34. Box HC (1977) Radiation effects: ESR and ENDOR analysis. Academic Press, New York

    Google Scholar 

  35. Tarpan MA, Pauwels E, Vrielinck H et al (2010) Electron magnetic resonance and density functional theory study of room temperature X-irradiated β-D-fructose single crystals. J Phys Chem A 114:12417–12426. doi:10.1021/jp107777v

    Article  CAS  Google Scholar 

  36. Barone V, Adamo C, Grand A et al (1995) Structure and ESR features of glycine radical. J Am Chem Soc 117:12618–12624. doi:10.1021/ja00155a026

    Article  CAS  Google Scholar 

  37. Declerck R, Pauwels E, Speybroeck V Van, Waroquier M (2008) Molecular environment and temperature dependence of hyperfine interactions in sugar crystal radicals from first principles. J Phys Chem B 112:1508–1514. doi:10.1021/jp076571w

    Article  CAS  Google Scholar 

  38. Kay CWM, Schleicher E, Hitomi K et al (2005) Determination of the g-matrix orientation in flavin radicals by high-rield/high-frequency electronnuclear double resonance. Magn Reson Chem 43:S96–S102. doi:10.1002/mrc.1667

    Article  CAS  Google Scholar 

  39. Kumar A, Pottiboyina V, Sevilla MD (2012) One-electron oxidation of neutral sugar radicals of 2 `-deoxyguanosine and 2 `-deoxythymidine: a density functional theory (DFT) Study. J Phys Chem B 116:9409–9416. doi:10.1021/jp3059068

    Article  CAS  Google Scholar 

  40. Pauwels E, Asher J, Kaupp M, Waroquier M (2011) Cluster or periodic, static or dynamic-the challenge of calculating the g tensor of the solid-state glycine radical. Phys Chem Chem Phys 13:18638. doi:10.1039/c1cp21452g

    Article  CAS  Google Scholar 

  41. Pauwels E, Declerck R, Verstraelen T et al (2010) Influence of protein environment on the electron paramagnetic resonance properties of flavoprotein radicals: a QM/MM study. J Phys Chem B 114:16655–16665. doi:10.1021/jp109763t

    Article  CAS  Google Scholar 

  42. Pauwels E, Verstraelen T, De Cooman H et al (2008) Temperature study of a glycine radical in the solid state adopting a DFT periodic approach: vibrational analysis and comparison with EPR experiments. J Phys Chem B 112:7618–7630. doi:10.1021/jp711997y

    Article  CAS  Google Scholar 

  43. Petrenko TL (2002) Transformation and structure of cation radicals in L-alpha-alanine. J Phys Chem A 106:149–156. doi:10.1021/jp0106395

    Article  CAS  Google Scholar 

  44. Tachikawa H, Takada T (2013) Ionization dynamics of the water trimer: a direct ab initio MD study. Chem Phys 415:76–83. doi:10.1016/j.chemphys.2012.12.027

    Article  CAS  Google Scholar 

  45. Tachikawa H, Fukuzumi T (2011) Ionization dynamics of aminopyridine dimer: a direct ab initio molecular dynamics (MD) study. Phys Chem Chem Phys 13:5881–5887. doi:10.1039/c0cp01542c

    Article  CAS  Google Scholar 

  46. Aalbergsjø SG, Pauwels E, Van Yperen-De Deyne A, Van Speybroeck V, Sagstuen E (2014) Automated generation of radical species in crystalline carbohydrates using ab initio MD simulations. Phys Chem Chem Phys 16: 17196-17205. doi: 10.1039/c4cp02179g

    Google Scholar 

  47. Pauwels E, Lahorte P, Vanhaelewyn G et al (2002) Tentative structures for the radiation-induced radicals in crystalline beta-D-fructose using density functional theory. J Phys Chem A 106:12340–12348. doi:10.1021/jp0264174

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02. Gaussian Inc Wallingford CT 34:Wallingford CT. doi:10.1159/000348293

    Google Scholar 

  49. Asher JR, Kaupp M (2008) Car-Parrinello molecular dynamics simulations and EPR property calculations on aqueous ubisemiquinone radical anion. Theor Chem Acc 119:477–487. doi:10.1007/s00214-007-0408-1

    Article  CAS  Google Scholar 

  50. CPMD. http://www.cpmd.org, 1990–2008, Copyright IBM Corp 1997-2001, Copyright MPI für Festkörperforschung Stuttgart

  51. Becke AD (1996) Density-functional thermochemistry.4. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046. doi:10.1063/1.470829

    Article  CAS  Google Scholar 

  52. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101. doi:10.1063/1.2408420

    Article  Google Scholar 

  53. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. doi:10.1103/PhysRevA.31.1695

    Article  Google Scholar 

  54. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511. doi:10.1063/1.447334

    Article  Google Scholar 

  55. Sagstuen E, Sanderud A, Hole EO (2004) The solid-state radiation chemistry of simple amino acids, revisited. Radiat Res 162:112–119. doi:10.1667/rr3215

    Article  CAS  Google Scholar 

  56. Debije MG, Bernhard WA (2001) Electron paramagnetic resonance evidence for a C3′ sugar radical in crystalline d(CTCTCGAGAG) X-irradiated at 4 K. Radiat Res 155:687–692. doi:10.1667/0033-7587(2001)155[0687:EPREFA]2.0.CO;2

    Article  CAS  Google Scholar 

  57. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. 3:294. doi:10.1002/3527600043

    Google Scholar 

  58. Peng CY, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56. doi:10.1002/(SICI)1096-987X(19960115)17:1%3C49::AID-JCC5%3E3.0.CO;2–0

    Article  CAS  Google Scholar 

  59. Adhikary A, Kumar A, Heizer AN et al (2013) Hydroxyl ion addition to one-electron oxidized thymine: unimolecular interconversion of C5 to C6 OH-adducts. J Am Chem Soc 135:3121–3135. doi:10.1021/ja310650n

    Article  CAS  Google Scholar 

  60. Adhikary A, Kumar A, Palmer BJ et al (2013) Formation of S-Cl phosphorothioate adduct radicals in dsDNA S-oligomers: hole transfer to guanine vs disulfide anion radical formation. J Am Chem Soc 135:12827–12838

    Article  CAS  Google Scholar 

  61. Elber R, Karplus M (1987) A method for determining reaction paths in large molecules: application to myoglobin. Chem Phys Lett 139:375–380. doi:10.1016/0009-2614(87)80576-6

    Article  CAS  Google Scholar 

  62. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985. doi:10.1063/1.1323224

    Article  CAS  Google Scholar 

  63. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904. doi:10.1063/1.1329672

    Article  CAS  Google Scholar 

  64. Pauwels E, De Cooman H, Waroquier M et al (2014) Solved? The reductive radiation chemistry of alanine. Phys Chem Chem Phys 16:2475–2482. doi:10.1039/c3cp54441a

    Article  CAS  Google Scholar 

  65. Li X, Sanche L, Sevilla MD (2006) Base release in nucleosides induced by low-energy electrons: a DFT study. Radiat Res 165:721–729. doi:10.1667/RR3568.1

    Article  CAS  Google Scholar 

  66. Sagstuen E, Close DM, Vågane R et al (2006) Electron transfer in amino acid.nucleic acid base complexes: EPR, ENDOR, and DFT study of X-irradiated N-formylglycine.cytosine complex crystals. J Phys Chem A 110:8653–8662. doi:10.1021/jp0610822

    Article  CAS  Google Scholar 

  67. De Cooman H (2009) A combined EMR and DFT study of radiation-induced defects in sucrose and glucose 1-phosphate. PhD Thesis, Ghent University.

    Google Scholar 

  68. Von Sonntag C, Schuchmann H-P (2001) Carbohydrates. In: Jonah CD, Rao BSM (eds) Radiation chemistry present status future trends. Elsevier, Amsterdam, pp 481–512

    Chapter  Google Scholar 

  69. Von Sonntag C (1987) The chemical basis of radiation biology. 515

    Google Scholar 

  70. Sagstuen E, Hole EO (2009) Radiation produced radicals. In: Brustolon M, Giamello E (eds) Electron paramagnetic resonance a practitioner’s toolkit. Hoboken New Jersey: John Wiley & Sons, pp 325–382

    Google Scholar 

  71. Pulay P (1980) Convergence acceleration of iterative sequences—the case of SCF iteration. Chem Phys Lett 73:393–398. doi:10.1016/0009-2614(80)80396-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Fund for Scientific Research—Flanders (FWO) and the Research Board of the Ghent University. All computational resources (Stevin Supercomputer Infrastructure) and services used in this work were provided by Ghent University, the Hercules Foundation and the Flemish Government—department EWI. This chapter is dedicated to children lost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewald Pauwels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing

About this chapter

Cite this chapter

Pauwels, E. (2014). Uncovering Radiation Chemistry in the Solid State Through Periodic Density-Functional Calculations: Confrontation with Experimental Results and Beyond. In: Lund, A., Shiotani, M. (eds) Applications of EPR in Radiation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-09216-4_18

Download citation

Publish with us

Policies and ethics