Skip to main content

Material Symmetry to Partition Endgame Tables

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8427)


Many games display some kind of material symmetry. That is, some sets of game elements can be exchanged for another set of game elements, so that the resulting position will be equivalent to the original one, no matter how the elements were arranged on the board. Material symmetry is routinely used in card game engines when they normalize their internal representation of the cards.

Other games such as chinese dark chess also feature some form of material symmetry, but it is much less clear what the normal form of a position should be. We propose a principled approach to detect material symmetry. Our approach is generic and is based on solving multiple relatively small sub-graph isomorphism problems. We show how it can be applied to chinese dark chess, dominoes, and skat.

In the latter case, the mappings we obtain are equivalent to the ones resulting from the standard normalization process. In the two former cases, we show that the material symmetry allows for impressive savings in memory requirements when building endgame tables. We also show that those savings are relatively independent of the representation of the tables.


  • Endgame Tables
  • Domino
  • Skating
  • Standard Normalization Process
  • Endgame Databases

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-09165-5_16
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-09165-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1.

    For more details, we refer to the rules from the International Skat Players Association:

  2. 2.

    For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.


  1. Buro, M., Long, J.R., Furtak, T., Sturtevant, N.: Improving state evaluation, inference, and search in trick-based card games. In: 21st International Joint Conference on Artificial Intelligence (IJCAI 2009) (2009)

    Google Scholar 

  2. Cazenave, T.: Generation of patterns with external conditions for the game of go. Adv. Comput. Games 9, 275–293 (2001)

    Google Scholar 

  3. Chen, B.-N., Shen, B.-J., Hsu, T.: Chinese dark chess. ICGA J. 33(2), 93 (2010)

    Google Scholar 

  4. Ciancarini, P., Favini, G.P.: Solving kriegspiel endings with brute force: the case of KR vs. K. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 136–145. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  5. Culberson, J.C., Schaeffer, J.: Pattern databases. Comput. Intell. 14(3), 318–334 (1998)

    CrossRef  MathSciNet  Google Scholar 

  6. Fang, H., Hsu, T., Hsu, S.-C.: Construction of Chinese Chess endgame databases by retrograde analysis. In: Marsland, T., Frank, I. (eds.) CG 2001. LNCS, vol. 2063, pp. 96–114. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  7. Furtak, T., Buro, M.: Using payoff-similarity to speed up search. In: 22nd International Joint Conference on Artificial Intelligence (IJCAI2011), pp. 534–539. AAAI Press (2011)

    Google Scholar 

  8. Gasser, R.: Solving nine men’s morris. Comput. Intell. 12(1), 24–41 (1996)

    CrossRef  Google Scholar 

  9. Ginsberg, M.L.: Partition search. In: National Conference On Artificial Intelligence (AAAI1996), pp. 228–233 (1996)

    Google Scholar 

  10. Goldenberg, M., Lu, P., Schaeffer, J.: TrellisDAG: a system for structured DAG scheduling. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 21–43. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  11. Kupferschmid, S., Helmert, M.: A skat player based on Monte-Carlo simulation. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 135–147. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  12. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: 2001 Proceedings of IEEE International Conference on Data Mining, ICDM 2001, pp. 313–320. IEEE (2001)

    Google Scholar 

  13. Long, J.R.: Search, inference and opponent modelling in an expert-caliber skat player, PhD thesis, University of Alberta (2011)

    Google Scholar 

  14. Nalimov, E.V., Haworth, G.M., Heinz, E.A.: Space-efficient indexing of chess endgame tables. ICGA J. 23(3), 148–162 (2000)

    Google Scholar 

  15. Romein, J., Bal, H.E.: Solving awari with parallel retrograde analysis. Computer 36(10), 26–33 (2003)

    CrossRef  Google Scholar 

  16. Schadd, M.P.D., Winands, M.H.M., Uiterwijk, J.W.H.M., Van Den Herik, H.J., Bergsma, M.H.J.: Best play in fanorona leads to draw. New Math. Nat. Comput. 4(3), 369–387 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Schaeffer, J., Björnsson, Y., Burch, N., Lake, R., Sutphen, S.: Building the checkers 10-piece endgame databases. In: Van Den Herik, H.J., Iida, H., Heinz, E.A. (eds.) Many Games, Many Challenges. IFIP, vol. 135, pp. 193–210. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  18. Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Paul, L., Sutphen, S.: Checkers is solved. Science 317(5844), 1518–1522 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Thompson, K.: Retrograde analysis of certain endgames. ICCA J. 9(3), 131–139 (1986)

    Google Scholar 

  20. Thompson, K.: 6-piece endgames. ICCA J. 19(4), 215–226 (1996)

    Google Scholar 

  21. Ullmann, J.D.: An algorithm for subgraph isomorphism. J. ACM (JACM) 23(1), 31–42 (1976)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Abdallah Saffidine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Saffidine, A., Jouandeau, N., Buron, C., Cazenave, T. (2014). Material Symmetry to Partition Endgame Tables. In: van den Herik, H., Iida, H., Plaat, A. (eds) Computers and Games. CG 2013. Lecture Notes in Computer Science(), vol 8427. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09164-8

  • Online ISBN: 978-3-319-09165-5

  • eBook Packages: Computer ScienceComputer Science (R0)