Skip to main content

Small Vessel Disease in CKD, Diabetes, Obesity and Hypertension

  • Chapter
  • First Online:
Cardio-Renal Clinical Challenges

Abstract

In the Western world diabetes and hypertension are the most common causes of renal disease and the consequent need for renal replacement therapy. Obesity has emerged as one of the major healthcare challenges afflicting the populations of developed and developing countries alike. In the clinic setting, obesity is seldom seen in isolation; rather it is often encountered together with diabetes mellitus, or impaired glucose homeostasis, and hypertension, a constellation of diseases defined as the metabolic syndrome. The disease entities under the umbrella of the metabolic syndrome each contribute to small vessel changes that ultimately lead to end organ damage including renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, Shulman NB, Stamler J. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334:13–8.

    Article  CAS  PubMed  Google Scholar 

  2. Perry Jr HM, Miller JP, Fornoff JR, Baty JD, Sambhi MP, Rutan G, Moskowitz DW, Carmody SE. Early predictors of 15-year end-stage renal disease in hypertensive patients. Hypertension. 1995;25:587–94.

    Article  PubMed  Google Scholar 

  3. Kopp JB. Rethinking hypertensive kidney disease: arterionephrosclerosis as a genetic, metabolic, and inflammatory disorder. Curr Opin Nephrol Hypertens. 2013;22:266–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bidani AK, Griffin KA, Williamson G, Wang X, Loutzenhiser R. Protective importance of the myogenic response in the renal circulation. Hypertension. 2009;54:393–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ofstad J, Iversen BM, Morkrid L, Sekse I. Autoregulation of renal blood flow (RBF) with and without participation of afferent arterioles. Acta Physiol Scand. 1987;130:25–32.

    Article  CAS  PubMed  Google Scholar 

  6. Bidani AK, Griffin KA. Long-term renal consequences of hypertension for normal and diseased kidneys. Curr Opin Nephrol Hypertens. 2002;11:73–80.

    Article  PubMed  Google Scholar 

  7. Karlsen FM, Andersen CB, Leyssac PP, Holstein-Rathlou NH. Dynamic autoregulation and renal injury in Dahl rats. Hypertension. 1997;30:975–83.

    Article  CAS  PubMed  Google Scholar 

  8. Arnlov J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D, Benjamin EJ, D’Agostino RB, Vasan RS. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation. 2005;112:969–75.

    Article  PubMed  Google Scholar 

  9. Greenstein AS, Price A, Sonoyama K, Paisley A, Khavandi K, Withers S, Shaw L, Paniagua O, Malik RA, Heagerty AM. Eutrophic remodeling of small arteries in type 1 diabetes mellitus is enabled by metabolic control: a 10-year follow-up study. Hypertension. 2009;54:134–41.

    Article  CAS  PubMed  Google Scholar 

  10. Khavandi K, Greenstein AS, Sonoyama K, Withers S, Price A, Malik RA, Heagerty AM. Myogenic tone and small artery remodelling: insight into diabetic nephropathy. Nephrol Dial Transplant. 2009;24:361–9.

    Article  PubMed  Google Scholar 

  11. Hayashi K, Epstein M, Loutzenhiser R. Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Circ Res. 1989;65:1475–84.

    Article  CAS  PubMed  Google Scholar 

  12. Hayashi K, Epstein M, Loutzenhiser R. Determinants of renal actions of atrial natriuretic peptide. Lack of effect of atrial natriuretic peptide on pressure-induced vasoconstriction. Circ Res. 1990;67:1–10.

    Article  CAS  PubMed  Google Scholar 

  13. Martinez-Lemus LA, Crow T, Davis MJ, Meininger GA. Alphavbeta3- and alpha5beta1-integrin blockade inhibits myogenic constriction of skeletal muscle resistance arterioles. Am J Physiol Heart Circ Physiol. 2005;289:H322–9.

    Article  CAS  PubMed  Google Scholar 

  14. Drummond HA, Jernigan NL, Grifoni SC. Sensing tension: epithelial sodium channel/acid-sensing ion channel proteins in cardiovascular homeostasis. Hypertension. 2008;51:1265–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Endemann DH, Pu Q, De Ciuceis C, Savoia C, Virdis A, Neves MF, Touyz RM, Schiffrin EL. Persistent remodeling of resistance arteries in type 2 diabetic patients on antihypertensive treatment. Hypertension. 2004;43:399–404.

    Article  CAS  PubMed  Google Scholar 

  16. Schofield I, Malik R, Izzard A, Austin C, Heagerty A. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation. 2002;106:3037–43.

    Article  PubMed  Google Scholar 

  17. Rosei EA, Rizzoni D. Small artery remodelling in diabetes. J Cell Mol Med. 2010;14:1030–6.

    PubMed  Google Scholar 

  18. Rizzoni D, De Ciuceis C, Porteri E, Semeraro F, Rosei EA. Structural alterations in small resistance arteries in obesity. Basic Clin Pharmacol Toxicol. 2012;110:56–62.

    Article  CAS  PubMed  Google Scholar 

  19. De Ciuceis C, Porteri E, Rizzoni D, Corbellini C, La Boria E, Boari GE, Pilu A, Mittempergher F, Di Betta E, Casella C, Nascimbeni R, Rosei CA, Ruggeri G, Caimi L, Rosei EA. Effects of weight loss on structural and functional alterations of subcutaneous small arteries in obese patients. Hypertension. 2011;58:29–36.

    Article  PubMed  Google Scholar 

  20. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100:158–73.

    Article  CAS  PubMed  Google Scholar 

  21. Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol. 2006;17:2106–11.

    Article  CAS  PubMed  Google Scholar 

  22. Thambyrajah J, Landray MJ, McGlynn FJ, Jones HJ, Wheeler DC, Townend JN. Abnormalities of endothelial function in patients with predialysis renal failure. Heart. 2000;83:205–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. van Guldener C, Janssen MJ, Lambert J, ter Wee PM, Jakobs C, Donker AJ, Stehouwer CD. No change in impaired endothelial function after long-term folic acid therapy of hyperhomocysteinaemia in haemodialysis patients. Nephrol Dial Transplant. 1998;13:106–12.

    Article  PubMed  Google Scholar 

  24. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, Gans RO, Janssen WM, Grobbee DE, de Jong PE. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.

    Article  CAS  PubMed  Google Scholar 

  25. Verhave JC, Gansevoort RT, Hillege HL, Bakker SJ, De Zeeuw D, de Jong PE. An elevated urinary albumin excretion predicts de novo development of renal function impairment in the general population. Kidney Int Suppl. 2004;92:S18–21.

    Google Scholar 

  26. Stam F, van Guldener C, Becker A, Dekker JM, Heine RJ, Bouter LM, Stehouwer CD. Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn study. J Am Soc Nephrol. 2006;17:537–45.

    Article  CAS  PubMed  Google Scholar 

  27. Schwedhelm E, Boger RH. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat Rev Nephrol. 2011;7:275–85.

    Article  CAS  PubMed  Google Scholar 

  28. McClung JA, Naseer N, Saleem M, Rossi GP, Weiss MB, Abraham NG, Kappas A. Circulating endothelial cells are elevated in patients with type 2 diabetes mellitus independently of hba(1)c. Diabetologia. 2005;48:345–50.

    Article  CAS  PubMed  Google Scholar 

  29. Ohishi K, Okwueze MI, Vari RC, Carmines PK. Juxtamedullary microvascular dysfunction during the hyperfiltration stage of diabetes mellitus. Am J Physiol. 1994;267:F99–105.

    CAS  PubMed  Google Scholar 

  30. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32 Suppl 2:64–78.

    Article  PubMed  Google Scholar 

  31. Satchell SC, Braet F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol. 2009;296:F947–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng. 2012;40:828–39.

    Article  CAS  PubMed  Google Scholar 

  33. Singh A, Satchell SC, Neal CR, McKenzie EA, Tooke JE, Mathieson PW. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol. 2007;18:2885–93.

    Article  CAS  PubMed  Google Scholar 

  34. Singh A, Friden V, Dasgupta I, Foster RR, Welsh GI, Tooke JE, Haraldsson B, Mathieson PW, Satchell SC. High glucose causes dysfunction of the human glomerular endothelial glycocalyx. Am J Physiol Renal Physiol. 2011;300:F40–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sun C, Wang JJ, Mackey DA, Wong TY. Retinal vascular caliber: systemic, environmental, and genetic associations. Surv Ophthalmol. 2009;54:74–95.

    Article  PubMed  Google Scholar 

  36. Nguyen TT, Wong TY. Retinal vascular manifestations of metabolic disorders. Trends Endocrinol Metab. 2006;17:262–8.

    Article  CAS  PubMed  Google Scholar 

  37. Wong TY, Duncan BB, Golden SH, Klein R, Couper DJ, Klein BE, Hubbard LD, Sharrett AR, Schmidt MI. Associations between the metabolic syndrome and retinal microvascular signs: the atherosclerosis risk in communities study. Invest Ophthalmol Vis Sci. 2004;45:2949–54.

    Article  PubMed  Google Scholar 

  38. Zhao Y, Yang K, Wang F, Liang Y, Peng Y, Shen R, Wong T, Wang N. Associations between metabolic syndrome and syndrome components and retinal microvascular signs in a rural Chinese population: the Handan eye study. Graefes Arch Clin Exp Ophthalmol. 2012;250:1755–63.

    Article  PubMed  Google Scholar 

  39. Kawasaki R, Tielsch JM, Wang JJ, Wong TY, Mitchell P, Tano Y, Tominaga M, Oizumi T, Daimon M, Kato T, Kawata S, Kayama T, Yamashita H. The metabolic syndrome and retinal microvascular signs in a Japanese population: the Funagata study. Br J Ophthalmol. 2008;92:161–6.

    Article  CAS  PubMed  Google Scholar 

  40. Ding J, Wai KL, McGeechan K, Ikram MK, Kawasaki R, Xie J, Klein R, Klein BB, Cotch MF, Wang JJ, Mitchell P, Shaw JE, Takamasa K, Sharrett AR, Wong TY, Meta-Eye Study Group. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J Hypertens. 2014;32:207–15.

    Article  CAS  PubMed  Google Scholar 

  41. Kawasaki R, Xie J, Cheung N, Lamoureux E, Klein R, Klein BE, Cotch MF, Sharrett AR, Shea S, Wong TY. MESA. Retinal microvascular signs and risk of stroke: the multi-ethnic study of atherosclerosis (mesa). Stroke. 2012;43:3245–51.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Cheung CY, Tay WT, Ikram MK, Ong YT, De Silva DA, Chow KY, Wong TY. Retinal microvascular changes and risk of stroke: the Singapore Malay Eye Study. Stroke. 2013;44:2402–8.

    Article  PubMed  Google Scholar 

  43. Wang L, Wong TY, Sharrett AR, Klein R, Folsom AR, Jerosch-Herold M. Relationship between retinal arteriolar narrowing and myocardial perfusion: multi-ethnic study of atherosclerosis. Hypertension. 2008;51:119–26.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Fiadh AH, Farouque O, Kawasaki R, Nguyen TT, Uddin N, Freeman M, Patel SK, Burrell LM, Wong TY. Retinal microvascular structure and function in patients with risk factors of atherosclerosis and coronary artery disease. Atherosclerosis. 2014;233:478–84.

    Article  CAS  PubMed  Google Scholar 

  45. De Silva DA, Manzano JJ, Liu EY, Woon FP, Wong WX, Chang HM, Chen C, Lindley RI, Wang JJ, Mitchell P, Wong TY, Wong MC, Multi-Centre Retinal Stroke Study Group. Retinal microvascular changes and subsequent vascular events after ischemic stroke. Neurology. 2011;77:896–903.

    Article  PubMed  Google Scholar 

  46. Taylor B, Rochtchina E, Wang JJ, Wong TY, Heikal S, Saw SM, Mitchell P. Body mass index and its effects on retinal vessel diameter in 6-year-old children. Int J Obes (Lond). 2007;31:1527–33.

    Article  CAS  Google Scholar 

  47. Cheung N, Saw SM, Islam FM, Rogers SL, Shankar A, de Haseth K, Mitchell P, Wong TY. BMI and retinal vascular caliber in children. Obesity (Silver Spring). 2007;15:209–15.

    Article  Google Scholar 

  48. Murgan I, Beyer S, Kotliar KE, Weber L, Bechtold-Dalla Pozza S, Dalla Pozza R, Wegner A, Sitnikova D, Stock K, Heemann U, Schmaderer C, Baumann M. Arterial and retinal vascular changes in hypertensive and prehypertensive adolescents. Am J Hypertens. 2013;26:400–8.

    Article  CAS  PubMed  Google Scholar 

  49. Liew G, Mitchell P, Wong TY, Wang JJ. Retinal microvascular signs are associated with chronic kidney disease in persons with and without diabetes. Kidney Blood Press Res. 2012;35:589–94.

    Article  CAS  PubMed  Google Scholar 

  50. Myers CE, Klein R, Knudtson MD, Lee KE, Gangnon R, Wong TY, Klein BE. Determinants of retinal venular diameter: the beaver dam eye study. Ophthalmology. 2012;119:2563–71.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Benitez-Aguirre PZ, Sasongko MB, Craig ME, Jenkins AJ, Cusumano J, Cheung N, Wong TY, Donaghue KC. Retinal vascular geometry predicts incident renal dysfunction in young people with type 1 diabetes. Diabetes Care. 2012;35:599–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lim LS, Cheung CY, Sabanayagam C, Lim SC, Tai ES, Huang L, Wong TY. Structural changes in the retinal microvasculature and renal function. Invest Ophthalmol Vis Sci. 2013;54:2970–6.

    Article  PubMed  Google Scholar 

  53. De Ciuceis C, Rossini C, La Boria E, Porteri E, Petroboni B, Gavazzi A, Sarkar A, Rosei EA, Rizzoni D. Immune mechanisms in hypertension. High Blood Press Cardiovasc Prev. DOI:10.1007/s40292-014-0040-9.

  54. Aghamohammadzadeh R, Heagerty AM. Obesity-related hypertension: epidemiology, pathophysiology, treatments, and the contribution of perivascular adipose tissue. Ann Med. 2012;44 Suppl 1:S74–84.

    Article  CAS  PubMed  Google Scholar 

  55. Aghamohammadzadeh R, Withers S, Lynch F, Greenstein A, Malik R, Heagerty A. Perivascular adipose tissue from human systemic and coronary vessels: the emergence of a new pharmacotherapeutic target. Br J Pharmacol. 2012;165:670–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, Laing I, Yates AP, Pemberton PW, Malik RA, Heagerty AM. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119:1661–70.

    Article  CAS  PubMed  Google Scholar 

  57. Lee RM, Bader M, Alenina N, Santos RA, Gao YJ, Lu C. Mas receptors in modulating relaxation induced by perivascular adipose tissue. Life Sci. 2011;89:467–72.

    Article  CAS  PubMed  Google Scholar 

  58. Lu C, Zhao AX, Gao YJ, Lee RM. Modulation of vein function by perivascular adipose tissue. Eur J Pharmacol. 2011;657:111–6.

    Article  CAS  PubMed  Google Scholar 

  59. Beltowski J. Endogenous hydrogen sulfide in perivascular adipose tissue: role in the regulation of vascular tone in physiology and pathology. Can J Physiol Pharmacol. 2013;91:889–98.

    Article  CAS  PubMed  Google Scholar 

  60. Lynch FM, Withers SB, Yao Z, Werner ME, Edwards G, Weston AH, Heagerty AM. Perivascular adipose tissue-derived adiponectin activates BK(Ca) channels to induce anticontractile responses. Am J Physiol Heart Circ Physiol. 2013;304:H786–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Withers SB, Agabiti-Rosei C, Livingstone DM, Little MC, Aslam R, Malik RA, Heagerty AM. Macrophage activation is responsible for loss of anticontractile function in inflamed perivascular fat. Arterioscler Thromb Vasc Biol. 2011;31:908–13.

    Article  CAS  PubMed  Google Scholar 

  62. Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, Pemberton PW, Ammori B, Malik RA, Soran H, Heagerty AM. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol. 2013;62:128–35.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Jones C, Roderick P, Harris S, Rogerson M. Decline in kidney function before and after nephrology referral and the effect on survival in moderate to advanced chronic kidney disease. Nephrol Dial Transplant. 2006;21:2133–43.

    Article  PubMed  Google Scholar 

  64. Hall RJ, Lefroy D. British Cardiac Society, British Hypertension Society, UK Diabetes, UK HEART, Primary Care Cardiovascular Society, Stroke Association. Jbs 2: Joint British Societies’ guidelines on prevention of cardiovascular disease in clinical practice. Heart. 2005;91 Suppl 5:v1–52.

    Google Scholar 

  65. Wang IK, Tsai MK, Liang CC, Yen TH, Huang CC, Wen SF, Wen CP. The role of physical activity in chronic kidney disease in the presence of diabetes mellitus: a prospective cohort study. Am J Nephrol. 2013;38:509–16.

    Article  CAS  PubMed  Google Scholar 

  66. van Vilsteren MC, de Greef MH, Huisman RM. The effects of a low-to-moderate intensity pre-conditioning exercise programme linked with exercise counselling for sedentary haemodialysis patients in the Netherlands: results of a randomized clinical trial. Nephrol Dial Transplant. 2005;20:141–6.

    Article  PubMed  Google Scholar 

  67. Sarrias M, Diaz E, Escofet R. Lifestyle in patients with chronic kidney disease is associated with less arterial stiffness. J Ren Care. 2010;36:139–44.

    Article  PubMed  Google Scholar 

  68. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    Article  CAS  PubMed  Google Scholar 

  69. Hernandez-Perera O, Perez-Sala D, Navarro-Antolin J, Sanchez-Pascuala R, Hernandez G, Diaz C, Lamas S. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest. 1998;101:2711–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Feron O, Dessy C, Desager JP, Balligand JL. Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation. 2001;103:113–8.

    Article  CAS  PubMed  Google Scholar 

  71. Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest. 1999;103:897–905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol. 2000;20:61–9.

    Article  CAS  PubMed  Google Scholar 

  73. Hou W, Lv J, Perkovic V, Yang L, Zhao N, Jardine MJ, Cass A, Zhang H, Wang H. Effect of statin therapy on cardiovascular and renal outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. Eur Heart J. 2013;34(24):1807–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Aghamohammadzadeh MB, ChB (Honours), MRCP, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aghamohammadzadeh, R., Wylie, E.C., Heagerty, A.M. (2015). Small Vessel Disease in CKD, Diabetes, Obesity and Hypertension. In: Goldsmith, D., Covic, A., Spaak, J. (eds) Cardio-Renal Clinical Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-09162-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09162-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09161-7

  • Online ISBN: 978-3-319-09162-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics