Skip to main content

Why Should the Logic of Discovery Be Revived? A Reappraisal

  • Chapter
  • First Online:
Heuristic Reasoning

Part of the book series: Studies in Applied Philosophy, Epistemology and Rational Ethics ((SAPERE,volume 16))

Abstract

Three decades ago Laudan posed the challenge: Why should the logic of discovery be revived? This paper tries to answer this question arguing that the logic of discovery should be revived, on the one hand, because, by Gödel’s second incompleteness theorem, mathematical logic fails to be the logic of justification, and only reviving the logic of discovery logic may continue to have an important role. On the other hand, scientists use heuristic tools in their work, and it may be useful to study such tools systematically in order to improve current heuristic tools or to develop new ones. As a step towards reviving the logic of discovery, the paper follows Aristotle in asserting that logic must be a tool for the method of science, and outlines an approach to the logic of discovery based on the analytic method and on ampliative inference rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Planck, M.: Scientific Autobiography and Other Papers. Williams & Norgate, London (1950)

    Google Scholar 

  2. Einstein, A.: Ideas and Opinions. Crown Publishers, New York (1954)

    Google Scholar 

  3. Einstein, A.: Induction and deduction in physics. In: Einstein, A. (ed.) Collected Papers, vol. 7, pp. 108–109. Princeton University Press, Princeton (2002)

    Google Scholar 

  4. Reichenbach, H.: The Rise of Scientific Philosophy. University of California Press, Berkeley (1951)

    MATH  Google Scholar 

  5. Reichenbach, H.: The Theory of Probability: An Inquiry into the Logical and Mathematical Foundations of the Calculus of Probability. University of California Press, Berkeley (1949)

    MATH  Google Scholar 

  6. Novalis (von Hardenberg, Friedrich): Notes for a romantic encyclopedia. Das Allgemeine Brouillon. In: Wood DW (ed.) State University of New York Press, Albany (2007)

    Google Scholar 

  7. Cellucci, C.: Romanticism in mathematics. Newslett. HPM Group 64, 17–19 (2007)

    Google Scholar 

  8. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press, Cambridge (1976)

    Book  MATH  Google Scholar 

  9. Cellucci, C.: Top-down and bottom-up philosophy of mathematics. Found. Sci. 18, 93–106 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lakatos, I.: Philosophical papers. In: Worrall, J., Currie, G. (eds.) Cambridge University Press, Cambridge (1978)

    Google Scholar 

  11. Bacon, F.: Works. ed. In: Spedding, J., Ellis, R.L., Heath, D.D. (eds.) Frommann Holzboog, Stuttgart Bad Cannstatt (1961–1986)

    Google Scholar 

  12. Descartes, R.: Œuvres. In: Adam, C., Tannery, P (eds.). Vrin, Paris (1996)

    Google Scholar 

  13. Blanché, R.: La logique et son histoire, d’Aristote à Russell. Armand Colin, Paris (1970)

    Google Scholar 

  14. Frege, G.: The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number. Blackwell, Oxford (1959)

    Google Scholar 

  15. Frege, G.: Posthumous writings. In: Hermes, H., Kambartel, F., Kaulbach, F. (eds.). Blackwell, Oxford (1979)

    Google Scholar 

  16. Frege, G.: Collected papers on mathematics, logic, and philosophy. McGuinness, B. (ed.). Blackwell, Oxford

    Google Scholar 

  17. Cellucci, C.: Rethinking Logic. Logic in Relation to Mathematics, Evolution, and Method. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  18. Hilbert, D.: Grundlagen der Geometrie. In: Hallett, M., Majer, U. (eds.) David Hilbert’s Lectures on the Foundations of Geometry (1891–1902), pp. 540–606. Oxford University Press, Oxford (2004)

    Google Scholar 

  19. Hilbert, D.: On the concept of number. In: Ewald, W.B. (ed.) From Kant to Hilbert: A Source Book in the Foundations of Mathematics, II edn, pp. 1092–1095. Oxford University Press, Oxford (1996)

    Google Scholar 

  20. Hilbert, D.: Letter to Frege 29.12.1899. In: Gabriel, G., Hermes, H., Kambartel, F. (eds.) Gottlob Frege: Philosophical and Mathematical Correspondence, pp. 38–41. Blackwell, Oxford (1980)

    Google Scholar 

  21. Hilbert, D.: Axiomatic thought. In: Ewald, W.B. (ed.) From Kant to Hilbert: a source book in the foundations of mathematics, II edn, pp. 1107–1115. Oxford University Press, Oxford (1996)

    Google Scholar 

  22. Poincaré, H.: Science and Method. Nelson, London (1914)

    MATH  Google Scholar 

  23. Tarski, A.: Introduction to logic and to the methodology of deductive sciences. Tarski, J. (ed.). Oxford University Press, Oxford (1994)

    Google Scholar 

  24. Aliseda, A.: Abductive Reasoning: Logical Investigations into Discovery and Explanations. Springer, Berlin (2006)

    Google Scholar 

  25. Laudan, L.: Why Was the logic of discovery abandoned? In: Nickles, T. (ed.) Scientific Discovery, Logic, and Rationality, pp. 173–183. Reidel, Dordrecht (1980)

    Chapter  Google Scholar 

  26. Machado, A.: Border of a dream: selected poems. In: Barnstone, W. (ed.). Copper Canyon Press, Port Townsend (2004)

    Google Scholar 

  27. Boger, G.: Aristotle’s underlying logic. In: Gabbay, D.M., Woods, J. (eds.) Handbook of the History of Logic: Greek, Indian and Arabic logic, vol. 1, pp. 101–246. Elsevier, Amsterdam (2004)

    Google Scholar 

  28. Galileo, G.: Opere. In: Favaro, A. (ed.). Barbera, Florence (1968)

    Google Scholar 

  29. Newton, I.: Opticks, or a Treatise of the Reflections, Refractions, Inflections & Colours of Light. Dover, Mineola (1952)

    Google Scholar 

  30. Cohen, I.B.: Introduction to Newton’s ‘Principia’. Cambridge University Press, Cambridge (1971)

    Book  Google Scholar 

  31. Ribet, K.A.: From the Taniyama-Shimura conjecture to fermat’s last theorem. Annales de la Faculté des Sciences de Toulouse—Mathématiques 11, 116–139 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Morris, R.C., Nagel, E.: An Introduction to Logic and Scientific Method. Routledge, London (1964)

    Google Scholar 

  33. Peirce, C.S.: Collected papers. In: Hartshorne, C., Weiss, P., Burks, A.W. (eds.). Cambridge University Press, Cambridge (1931–1958)

    Google Scholar 

  34. Frankfurt, H.G.: Peirce’s notion of abduction. J. Philos. 55, 593–597 (1958)

    Article  Google Scholar 

  35. Peirce, C.S.: Reasoning and the logic of things. In: Ketner KL (ed.). Harvard University Press, Cambridge (1992)

    Google Scholar 

  36. Popper, K.: The Logic of Scientific Discovery. Routledge, London (2005)

    Google Scholar 

  37. Popper, K.: Realism and the aim of science. In: Bartley WW (ed.), III. Routledge, London (2000)

    Google Scholar 

  38. Popper, K.: Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge, London (1974)

    Google Scholar 

  39. Davis, P.J.: Mathematics and Common Sense: A Case of Creative Tension. A K Peters, Natick (2006)

    Book  Google Scholar 

  40. Kant, I.: Prolegomena to Any Future Metaphysics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  41. Russell, B.: An Outline of Philosophy. Routledge, London (1995)

    Google Scholar 

  42. Pólya, G.: Mathematics and Plausible Reasoning. Princeton University Press, Princeton (1954)

    Google Scholar 

  43. Hempel, C.G.: Philosophy of Natural Science. Prentice Hall, Upper Saddle River (1966)

    Google Scholar 

  44. Girard, J.Y.: Le champ du signe ou la faillite du réductionnisme. In: Nagel, E., Newman, J.R., Gödel, K., Girard, J.Y. (eds.) Le théorème de Gödel, pp. 147–171. Éditions du Seuil, Paris (1989)

    Google Scholar 

  45. Gillies, D.: Artificial Intelligence and Scientific Method. Oxford University Press, Oxford (1996)

    Google Scholar 

Download references

Acknowledgments

I am very grateful to Atocha Aliseda and Thomas Nickles for comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cellucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cellucci, C. (2015). Why Should the Logic of Discovery Be Revived? A Reappraisal. In: Ippoliti, E. (eds) Heuristic Reasoning. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-09159-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09159-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09158-7

  • Online ISBN: 978-3-319-09159-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics