Skip to main content

Weighted-Frequent Itemset Refinement Methodology (W-FIRM) of Usage Clusters

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8583))

Included in the following conference series:

  • 3543 Accesses

Abstract

Due to information overload on the Internet a large number of systems have been developed for extracting user behavior. This paper presents mining of Frequent Itemsets and refinement of usage clusters for web based applications. Here a particular case is under consideration where sessions in a cluster are in abundance, consequently leading to a very large number of not-so interesting recommendations for the user. To solve such problems we intend to refine clusters on the basis of Weighted Frequent Itemsets that in turn help to generate improved quality refined clusters. In the proposed work, Frequent Itemsets are sets of web pages that occur in sessions more than a given threshold known as the minimum support. Motivation for adapting Frequent Itemsets for refinement is the demand of dimensionality reduction. Experimental results show that the cluster quality using the proposed approach is better than the existing approaches (DBS, 2011 and HITS, 2010). After getting refined clusters the same can be used for number of applications such as Web Personalization, improvement in Web Site Structure, Analysis of Users’ Online Behavior and the services of a Recommender System.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mobasher: Discovery of aggregate usage profiles for web personalization. WebKDD, Boston (2009)

    Google Scholar 

  2. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowledge-Based Systems 46, 109–132 (2013)

    Article  Google Scholar 

  3. Ziegler, C.N.: On Recommender Systems. In: Ziegler, C.N. (ed.) Social Web Artifacts for Boosting Recommenders. SCI, vol. 487, pp. 11–22. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Berkhin, P.: Survey of clustering data mining techniques. Springer, Heidelberg

    Google Scholar 

  5. Flake, G., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identification of Web Communities. IEEE Computer 35(3) (2002)

    Google Scholar 

  6. Castellano, G., Fanelli, A.M., Mencar, C., Torsello, M.A.: Similarity based Fuzzy clustering for user profiling. In: Proceedings of International Conference on Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM (2007)

    Google Scholar 

  7. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Networks 16(3), 645–678 (2005)

    Article  Google Scholar 

  8. Mobasher, B., Cooley, R., Srivastava, J.: Automatic Personalization based on Web Usage Mining. Communications of the ACM 43(8), 142–151 (2000)

    Article  Google Scholar 

  9. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD 1993, p. 207 (1993)

    Google Scholar 

  10. Nock, R., Nielsen, F.: On Weighting Clustering. IEEE Transactions and Pattern Analysis and Machine Intelligence 28(8), 1223–1235 (2006)

    Article  Google Scholar 

  11. Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web. Wiley (2003)

    Google Scholar 

  12. Chakrabarti, S.: Mining the Web. Morgan Kaufmann Publishers (2003)

    Google Scholar 

  13. Banerjee, A., Ghosh, J.: Click stream clustering using weighted longest common subsequences. In: Proceedings of the Web Mining Workshop at the 1st SIAM Conference on Data Mining (2001)

    Google Scholar 

  14. Cadez, H.D., Meek, C., Smyth, P., White, S.: Model-based clustering and visualization of navigation patterns on a Web site. Data Mining and Knowledge Discovery 7(4), 399–424 (2003)

    Article  MathSciNet  Google Scholar 

  15. Fu, Y., Sandhu, K., Shih, M.Y.: Clustering of Web users based on access patterns. In: Proceedings of WEBKDD (1999)

    Google Scholar 

  16. Hay, B., Vanhoof, K., Wetsr, G.: Clustering navigation patterns on a Website using a sequence alignment method. In: Proceedings of 17th International Joint Conference on Artificial Intelligence, Seattle, Washington, USA (2001)

    Google Scholar 

  17. Wang, W., Zaane, O.R.: Clustering Web sessions by sequence alignment. In: Proceedings of the 13th International Workshop on Database and Expert Systems Applications, pp. 394–398. IEEE Computer Society, Washington, DC (2002)

    Google Scholar 

  18. Shahabe, C., Zarkesh, A.M., Abidi, J., Shah, V.: Knowledge discovery from user’s web-page navigation. In: Proceedings Seventh IEEE International Workshop on Research Issues in Data Engineering (RIDE), pp. 20–29 (1997)

    Google Scholar 

  19. Eiron, N., McCurley, K.S.: Untangling compound documents on the Web. In: Proceedings of the Fourteenth ACM Conference on Hypertext and Hypermedia (2003)

    Google Scholar 

  20. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB 1994, pp. 487–499 (1994)

    Google Scholar 

  21. Greco, G., Greco, S., Zumpano, E.: Web communities: models and algorithms. Journal of World Wide Web 7(1), 58–82 (2004)

    Article  Google Scholar 

  22. Cheng, J., Ke, Y., Ng, Q.: A survey on algorithms for mining frequent itemsets over data streams. Knowledge and Information Systems 16, 1–27 (2008)

    Article  MathSciNet  Google Scholar 

  23. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.: Web usage mining: discovery and applications of usage patterns from Web data. ACM SIGKDD Explorations Newsletter 1(2), 12–23 (2000)

    Article  Google Scholar 

  24. Munk, M., Kapusta, J., Svec, P.: Data preprocessing evaluation for web log mining: reconstruction of activities of a web visitor. Procedia Computer Science 1(1), 2273–2280 (2010)

    Article  Google Scholar 

  25. Kosala, R., Blockeel, H.: Web Mining Research: A Survey. ACM SIGKDD Explorations 2(1), 1–15 (2000)

    Article  Google Scholar 

  26. Liao, S.H., Chu, P.H., Hsiao, P.Y.: Data mining techniques and applications – A decade review from 2000 to 2011. Expert Systems with Applications 39(12), 11303–11311 (2011)

    Article  Google Scholar 

  27. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651–666 (2010), Award Winning Papers from the 19th International Conference on Pattern Recognition (ICPR) (2010)

    Google Scholar 

  28. Boyinbode, O., Le, H., Takizawa, M.: A survey on clustering algorithms for wireless sensor networks. International Journal of Space-Based and Situated Computing 1(2-3), 130–136 (2011)

    Article  Google Scholar 

  29. Prusiewicz, A., Zięba, M.: Services Recommendation in Systems Based on Service Oriented Architecture by Applying Modified ROCK Algorithm. In: Networked Digital Technologies Communications in Computer and Information Science, vol. 88, pp. 226–238. Springer (2010)

    Google Scholar 

  30. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999)

    Article  Google Scholar 

  31. Davies, D.L., Bouldin, D.W.A.: Cluster Separation Measure. Pattern Analysis and Machine Intelligence. IEEE Transactions PAMI-1(2), 224–227 (1979)

    Google Scholar 

  32. Chen, M.S., Han, J., Yu, P.S.: Data mining: an overview from a database perspective. Knowledge and Data Engineering 8(6), 866–883 (1996)

    Article  Google Scholar 

  33. Goethals, B.: Frequent Set Mining. In: Data Mining and Knowledge Discovery Handbook, pp. 377–397. Springer (2005)

    Google Scholar 

  34. Berkhin, P.: A Survey of Clustering Data Mining Techniques. In: Grouping Multidimensional Data, pp. 25–71. Springer (2006)

    Google Scholar 

  35. Borgelt, C.: An implementation of the FP-growth algorithm. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, pp. 1–5. ACM (2005)

    Google Scholar 

  36. Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. Pattern Analysis and Machine Intelligence 24(12), 1650–1654 (2002)

    Article  Google Scholar 

  37. Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for mining World Wide Web Browsing Patterns. In: Knowledge and Information Systems, pp. 1–25. Springer (1999)

    Google Scholar 

  38. Cormode, G., Hadjieleftheriou, M.: Methods for finding frequent items in data streams. The VLDB Journal 19, 3–20 (2010)

    Article  Google Scholar 

  39. Xie, Y., Phoha, V.V.: Web user clustering from access log using belief function. In: Proceedings of the First International Conference on Knowledge Capture (K-CAP 2001), pp. 202–208. ACM Press (2001)

    Google Scholar 

  40. Shahabi, C., Banaei-Kashani, F.: A framework for efficient and anonymous web usage mining based on client-side tracking. In: Kohavi, R., et al. (eds.) WebKDD 2001. LNCS (LNAI), vol. 2356, pp. 113–144. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  41. Ypma, A., Heskes, T.: Clustering web surfers with mixtures of hidden markov models. In: Proceedings of the 14th Belgian–Dutch Conference on AI (BNAIC 2002) (2002)

    Google Scholar 

  42. Nasraoui, O., Frigui, H., Joshi, A., Krishnapuram, R.: Mining Web Access Logs Using Relational Competitive Fuzzy Clustering. Presented at the Eight International Fuzzy Systems Association World Congress, IFSA 1999, Taipei (1999)

    Google Scholar 

  43. Tseng, F.C.: Mining frequent itemsets in large databases: The hierarchical partitioning approach. Expert Systems with Applications 40(5), 1654–1661 (2013)

    Article  Google Scholar 

  44. Oyanagi, S., Kubota, K., Nakase, A.: Application of matrix clustering to web log analysis and access prediction. In: Third International Workshop EBKDD 2001—Mining Web Log Data Across All Customers Touch Points (2001)

    Google Scholar 

  45. Kivi, M., Azmi, R.: A webpage similarity measure for web sessions clustering using sequence alignment. In: Proceedings of 2011 International Symposium Artificial Intelligence and Signal Processing (AISP). IEEE Press (2011)

    Google Scholar 

  46. Bentley, J.: Multidimensional Binary Search Trees Used for Associative Searching. ACM 18(9), 509–517 (1975)

    Article  MATH  Google Scholar 

  47. Bradley, P.S., Fayyad, U., Reina, C.: Scaling Clustering Algorithms to Large Databases. In: 4th International Conference on Knowledge Discovery and Data Mining (KDD 1998). AAAI Press (1998)

    Google Scholar 

  48. Scholkopf, B., Smola, J., Muller, R.: Technical Report: Nonlinear component analysis as a kernel eigen value problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  49. Dhillon, I.S., Fan, J., Guan, Y.: Efficient clustering of very large document collections. In: Data Mining for Scientific and Engineering Applications, pp. 357–381. Kluwer Academic Publishers (2001)

    Google Scholar 

  50. Elkan, C.: Using the Triangle Inequality to Accelerate k-Means. In: Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), pp. 609–616 (2003)

    Google Scholar 

  51. Yin, K.C., Hsieh, Y.L., Yang, D.L.: GLFMiner: Global and local frequent pattern mining with temporal intervals. In: 2010 the 5th IEEE Conference Industrial Electronics and Applications (ICIEA), pp. 2248–2253 (2010)

    Google Scholar 

  52. Baralis, E., Cerquitelli, T., Chiusano, S., Grand, A., Grimaudo, L.: An Efficient Itemset Mining Approach for Data Streams. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part II. LNCS, vol. 6882, pp. 515–523. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  53. Zhao, C., Jia, B., Liu, Y., Chen, L.: Mining global frequent sub trees. In: 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 5, pp. 2275–2279 (2010)

    Google Scholar 

  54. Cai, C.H., Fu, A.W., Cheng, C.H., Kwong, W.W.: Mining association rules with weighted items. In: Proceedings of the International Database Engineering and Applications Symposium, IDEAS 1998, Cardiff, Wales, UK, pp. 68–77 (1998)

    Google Scholar 

  55. Tao, F.: Weighted association rule mining using weighted support and significant framework. In: Proceedings of the 9th ACM SIGKDD, Knowledge Discovery and Data Mining, pp. 661–666 (2003)

    Google Scholar 

  56. Wang, W., Yang, J., Yu, P.S.: WAR: weighted association rules for item intensities. Knowledge Information and Systems 6, 203–229 (2004)

    Article  Google Scholar 

  57. Yun, U., Leggett, J.J.: WFIM: weighted frequent itemset mining with a weight range and a minimum weight. In: Proceedings of the 15th SIAM International Conference on Data Mining (SDM 2005), pp. 636–640 (2005)

    Google Scholar 

  58. Yun, U.: Efficient Mining of weighted interesting patterns with a strong weight and/or support affinity. Information Sciences 177, 3477–3499 (2007)

    Article  MathSciNet  Google Scholar 

  59. Xu, J., Liu, H.: Web User Clustering Analysis based on K-Means Algorithm. In: International Conference on Information Networking and Automation. IEEE (2010)

    Google Scholar 

  60. Liu, P., Li, W.: Navigation Pattern Discovery on Web Site Based on the Distance Between Sequences. Artificial Intelligence. In: Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). IEEE Press (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dixit, V.S., Bhatia, S.K., Kaur, S. (2014). Weighted-Frequent Itemset Refinement Methodology (W-FIRM) of Usage Clusters. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8583. Springer, Cham. https://doi.org/10.1007/978-3-319-09156-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09156-3_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09155-6

  • Online ISBN: 978-3-319-09156-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics