Advertisement

Computational Tool for the Energy Performance Assessment of Horticultural Industries – Case Study of Industries in the Centre Inner Region of Portugal

  • Diogo Neves
  • Pedro D. Gaspar
  • Pedro D. Silva
  • José Nunes
  • Luís P. Andrade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)

Abstract

Food processing and conservation represent decisive factors for the sustainability of the planet given the significant growth of the world population in the last decades. Therefore, the cooling of any food products has been subject of study and improvement in order to ensure the food supply with good quality and safety. A computational tool for the assessment of the energy performance of agrifood industries that use refrigeration systems was developed. It aims to promote the improvement of the energy efficiency of this industrial sector. The computational tool for analysis of the energy profile is based on a set of characteristic parameters used for the development of correlations, including the amount of raw material, annual energy consumption and volume of cold stores. In this paper, the developed computational tool was applied to companies in the horticultural sector, specifically to resale-type companies. The results obtained help on the decision making of practice measures for the improvement of the energy efficiency.

Keywords

Computational tool Energy performance Energy efficiency sustainability perishable products horticultural cold storage Matlab GUIDE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pachai, A.C.: From Crandle to table – cooling and freezing of food. In: 2nd IIR International Conference on Sustainability and the Cold Chain (ICCC 2013), Paris, France, pp. 2–4 (April 2013)Google Scholar
  2. 2.
    Laguerre, O., Hoang, H.M., Flick, D.: Experimental investigation and modelling in the food cold chain: Thermal and quality evolution. Trends in Food Science & Technology 29(2), 87–97 (2013)CrossRefGoogle Scholar
  3. 3.
    IEA: 2012 Key World Energy Statistics. International Energy Agency (IEA) (2012)Google Scholar
  4. 4.
    Harding, A.H., Wareham, N.J., Bingham, S.A., Khaw, K., Luben, R., Welch, A., Forouhi, N.G.: Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: the European prospective investigation of cancer–Norfolk prospective study. Archives of Internal Medicine 168(14), 1493–1499 (2008)CrossRefGoogle Scholar
  5. 5.
    World Cancer Research Fund (WCRF) Panel: Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. World Cancer Research Fund: Washington, DC (2007)Google Scholar
  6. 6.
    Mirmiran, P., Noori, N., Zavareh, M.B., Azizi, F.: Fruit and vegetable consumption and risk factors for cardiovascular disease. Metabolism 58(4), 460–468 (2009)CrossRefGoogle Scholar
  7. 7.
    Hung, H.C., Joshipura, K.J., Jiang, R., Hu, F.B., Hunter, D., Smith-Warner, S.A., Colditz, G.A., Rosner, B., Spiegelman, D., Willett, W.C.: Fruit and vegetable intake and risk of major chronic disease. Journal of the National Cancer Institute 96(21), 1577–1584 (2004)CrossRefGoogle Scholar
  8. 8.
    Rissanen, T.H., Voutilainen, S., Virtanen, J.K., Venho, B., Vanharanta, M., Mursu, J., Salonen, J.T.: Low intake of fruits, berries and vegetables is associated with excess mortality in men: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Study. Journal of Nutrition 133(1), 199–204 (2003)Google Scholar
  9. 9.
    World Health Organization: WHO European Action Plan for Food and Nutrition 2007-2012. WHO: Copenhagen, Denmark (2008)Google Scholar
  10. 10.
    European Food Safety Authority: Concise Database summary statistics - Total population (2008), http://www.efsa.europa.eu/en/datexfoodcdb/datexfooddb.htm
  11. 11.
    Gogou, E., Katsaros, G., Derens, E., Li, L., Alvarez, G., Taoukis, P.: Development and applications of the European Cold Chain Database as a tool for cold chain management. In: 2nd IIR International Conference on Sustainability and the Cold Chain (ICCC 2013), Paris, France, pp. 2–4 (April 2013)Google Scholar
  12. 12.
    Food Refrigeration Innovations for Safety, consumers Benefit, Environmental impact and Energy optimisation along the cold chain in EuropeGoogle Scholar
  13. 13.
    Stahl, V., Alvarez, G., Derens, E., Hoang, H.M., Lintz, A., Hezard, B., El Jabri, M., Lepage, J.F., Ndoye, F.T., Thuault, D., Gwanpua, S.G., Verboven, P., Geeraerd, A.: An essential part of the frisbee software tool: Identification and validation of models quantifying the impact of the cold chain on the RTE pork products. In: 2nd IIR International Conference on Sustainability and the Cold Chain (ICCC 2013), Paris, France, pp. 2–4 (April 2013)Google Scholar
  14. 14.
    Foster, A., Zilio, C., Corradi, M., Reinholdt, L., Evans, J.: Freely available cold store energy models. In: 2nd IIR International Conference on Sustainability and the Cold Chain (ICCC 2013), Paris, France, pp. 2–4 (April 2013)Google Scholar
  15. 15.
    ICE-E Improving cold storage equipment in Europe (2013)Google Scholar
  16. 16.
    Evans, J.A., Hammond, E.C., Gigiel, A.J., Foster, A.M., Reinholdt, L., Fikiin, K., Zilio, C.: Assessment of methods to reduce energy consumption of food cold stores. Applied Thermal Engineering 62(2), 697–705 (2014)CrossRefGoogle Scholar
  17. 17.
    Evans, J.A., Foster, A.M., Huet, J.-M., Reinholdt, L., Fikkin, K., Zilio, C., Houska, M., Landfeld, A., Bond, C., Scheurs, M., van Sambeeck, T.W.M.: Specific energy consumption values for various refrigerated cold stores. Energy and Buildings 74, 141–151 (2014)CrossRefGoogle Scholar
  18. 18.
    Eden, M., Colmer, C.: Improved Cold Chain Management: efficiency and food safety through international project results. Food Safety and Tecnhology 24(1), 30–32 (2010)Google Scholar
  19. 19.
    Welcome to the Chill-on Project, http://www.chill-on.com/
  20. 20.
    Colmer, C., Kuck, M., Lohmann, M., Bunke, M.: Novel Technologies to improve safety and transparency of the chilled food supply chain. Innovation in the Nordic Marine Sector (May 2009)Google Scholar
  21. 21.
    Butler, D.: Fridges could save power for a rainy day. Nature (2007)Google Scholar
  22. 22.
    Saint Trofee – Refrigeration Tools, http://www.nightwind.eu/night-wind.html
  23. 23.
  24. 24.
  25. 25.
    Nunes, J.: Energetic efficiency evaluation in refrigeration systems of agrifood industries in the Beira Interior region. PhD Thesis, University of Beira Interior, Covilhã, Portugal (2014)Google Scholar
  26. 26.
    Nunes, J., Silva, P.D., Andrade, L.P., Gaspar, P.D.: Characterization of specific energy consumption of electricity of Portuguese sausages industry. Energy and Sustainability 2014 - WIT Transactions on Ecology and the Environment 186 (2014)Google Scholar
  27. 27.
    Nunes, J., Silva, P.D., Andrade, L.P.: Energetic efficiency evaluation in refrigeration systems of meat industries. In: 23rd International Congress of Refrigeration, ICR 2011, Prague, Czech Republic, August 21-26 (2011)Google Scholar
  28. 28.
    Nunes, J., Silva, P.D., Andrade, L.P., Gaspar, P.D., Domingues, L.C.: Energetic evaluation of refrigeration systems of horticultural industries in Portugal. In: 3rd IIR International Conference on Sustainability and Cold Chain (ICCC 2014), London, United Kingdom, June 23-25 (2014)Google Scholar
  29. 29.
    Matworks: MATLAB Creating Graphical User Interfaces. The Mathworks, Inc., USA (2013)Google Scholar
  30. 30.
    Evans, J.A., Hammond, E.C., Gigiel, A.J., Reinholdt, L., Fikiin, K., Zilio, C.: Improving the energy performance of cold stores. In: 2nd IIR International Conference on Sustainability and the Cold Chain (ICCC 2013), Paris, France, April 2-4 (2013)Google Scholar
  31. 31.
    Santos, R., Nunes, J., Silva, P.D., Gaspar, P.D., Andrade, L.P.: Ferramenta computacional de análise e simulação do desempenho de unidades de conservação de carne através de frio industrial. In: VI Congreso Ibérico y IV Congreso Iberoamericano de Ciencias y Técnicas del Frío (CYTEF 2012), Madrid, Spain (February 2012)Google Scholar
  32. 32.
    Santos, R., Nunes, J., Silva, P.D., Gaspar, P.D., Andrade, L.P.: Computational tool for the analysis and simulation of cold room performance in perishable products industry. In: 2nd IIR International Conference on Sustainability and the Cold Chain (ICCC 2013), Paris, France, April 2-4 (2013)Google Scholar
  33. 33.
    Neves, D., Gaspar, P.D., Silva, P.D., Andrade, L.P., Nunes, J.: Computational tool for the energy efficiency assessment of cheese industries - Case study of inner region of Portugal. In: V Congreso Iberoamericano de Ciencias y Técnicas del Frío (CYTEF 2014), Tarragona, Spain, June 18-20 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Diogo Neves
    • 1
  • Pedro D. Gaspar
    • 1
  • Pedro D. Silva
    • 1
  • José Nunes
    • 2
  • Luís P. Andrade
    • 2
  1. 1.Electromechanical Engineering DepartmentUniversity of Beira InteriorCovilhãPortugal
  2. 2.Politechnic Institute of Castelo BrancoCastelo BrancoPortugal

Personalised recommendations